Sunita Kumari Meena*, Sarvjeet Kaur and B.L. Meena
ICAR – National Research Centre on Plant Biotechnology,
IARI Campus, New Delhi 110012, India.
Email:Sunita kumari meena (email:meenasb_bt08@yahoo.com)
Received-03.03.2017, Revised-15.03.2017
Abstract: Insecticidal cry and vip genes from Bacillus thuringiensis (Bt) have been used for control of lepidopteran insects in transgenic crops. However, novel genes are required for gene pyramiding to delay evolution of resistance to the currently deployed genes.PCR-based techniques were employed for screening of cry1Ab type genes in 96 Bt isolates from diverse habitats in India and 8 known Bt strains. 96 native Bt isolates, recovered from different locations in India and 8 known Bt strains were screened for the presence of cry 1 Ab, cry 1Ac, Cry 3A & vip 3A for Isolation of plasmid DNA from native Bt isolates of Bacillus thuringiensis, Screening for the presence of cry 1 Ab, cry 1Ac, cry 3A & vip 3A gene using PCR amplification and Cloning of partial cry 1 Ab & vip 3A gene using different sets of primers. Cry1Ab type genes were more prevalent than cry1Aa– and cry1Ac type genes. Correlation between source of isolates and abundance of cry1-type genes was not observed..
Keywords: Bacillus thuringiensis, Cry1Ab genes, Cry1Ac, Cry3A, Vip3A, Helicoverpa armigera, Insecticidal genes
Adang, M.J., Crickmore, N. and Jurat-Fuentes, J.L. (2014). Diversiry of Bacillus thuringiensis crystal toxins and mechanism of action. In Advances in insect physiology. Vol. 47. Edited by T.S. Dhadialla and S.S. Gill. Academic Press, Oxford. pp. 39 –87.
Akhurst, R.J., James, W., Bird, L.J. and Beard, C. (2003). Resistance to the Cry1Ac – endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 96: 1290 –1299.
Beard, C.E., Court, L., Mourant, R.G., James, B., Van Rie, J., Masson, L. and Akhurst, R.J. (2008). Use of a Cry1Ac-resistant line of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel insecticidal toxin genes in Bacillus thuringiensis. Curr. Microbiol. 57:175 –180.
Carozzi, N.B., Kramer, V.C., Warren, G.W., Evola, S. and Koziel, M.G. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57: 3057–3061.
Carriere, Y., Crickmore, N. and Tabashnik, B.E. (2015). Optimiz- ing pyramided transgenic Bt crops for sustainable pest man- agement. Nat. Biotechnol. 33: 161–168.
Fabrick, J.A., Ponnuraj, J., Singh, A., Tanwar, R.K., Unnithan, G.C., Yelich, A.J. et al. (2014). Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in In- dia. PLoS ONE, 9: e97900.
Gouffon, C., Van Vliet, A., Van Rie, J., Jansens, S. and Jurat-Fuentes, J.L. (2011). Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A Toxin. Appl. En- viron. Microbiol. 77: 3182–3188.
Ibargutxi, M., Muñoz, D., Escudero, I.R. and Caballero, P. (2008). Interactions between Cry1Ac, Cry2Ab, and Cry1Fa Bacillus thuringiensis toxins in the cotton pests Helicoverpa armigera (Hübner) and Earias insulana (Boisduval). Biol. Control, 47: 89-96
James, C. (2013). Global status of commercialized biotech/GM crops: 2013. ISAAA Brief No. 46. International Service for the Acquisition of Agri-biotech Applications, Ithaca, New York.
Jurat-Fuentes, J.L., Gould, F.L. and Adang, M.J. (2003). Dual resis- tance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resis- tance. Appl. Environ. Microbiol. 69: 5898 – 5906.
Katara, J.L., Deshmukh, R., Singh, N.K. and Kaur, S. (2012). Molecular typing of native Bacillus thuringiensis isolates from diverse habitats in India using REP-PCR and ERIC-PCR analy- sis. J. Gen. Appl. Microbiol. 58: 83–94.
Kaur, S. (2000). Molecular approaches towards development of novel Bacillus thurigiensis biopesticides. World J. Microbiol. Biotechnol. 16: 781–793.
Kaur, S. (2006). Molecular approaches for identification and con- struction of novel insecticidal genes for crop protection. World J. Microbiol. Biotechnol. 22: 233–253.
Kaur, S. (2012). Risk assessment of Bt transgenic crops. In Bacillus thuringiensis biotechnology. Edited by E. Sansinenea. Dor- drecht, the Netherlands. Springer Publishers, Heidelberg. pp.41-86.
Kaur, S. and Allam, U.S. (2006). PCR-based cloning of a novel cry1Ac gene from a Bacillus thuringiensis isolate recovered from stored cottonseeds. Biopestic. Int. 2: 120 –128.
Kaur, S. and Singh, A. (2000). Natural occurrence of Bacillus thuringiensis in leguminous phylloplanes in the New Delhi region of India. World J. Microbiol. Biotechnol. 16: 679 – 682.
Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N .B., Crenshaw, R., Crossland, L. et al. (1993). Field performance of elite transgenic maize plants expressing an insecticidal pro- tein derived from Bacillus thuringiensis. Biotechnology (NY), 11:194 –200.
Li, H. and Bouwer, G. (2014). Evaluation of the synergistic activ-ities of Bacillus thuringiensis Cry proteins against Helicoverpa armigera (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 121:7–13.
Liao, C., Heckel, D.G. and Akhurst, R. (2002). Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. J. Invertebr. Pathol. 80: 55 – 63.
Lin, Y., Fang, G. and Cai, F. (2008). The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: cloning, expression and structure simulation. Biotechnol. Lett. 30: 513– 519.
Misra, H.S., Khairnar, N.P., Mathur, M., Vijayalakshmi, N., Hire, R.S., Dongre, T.K. and Mahajan, S.K. (2002). Cloning and characterization of an insecticidal crystal protein gene from Bacillus thuringiensis subspecies kenyae. J. Genet. 81: 5 –11.
Pardo-López, L., Soberón, M. and Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protec- tion. FEMS Microbiol. Rev. 37: 3–22.
Porcar, M. and Juarez-Perez, V.M. (2003). PCR-based identifica- tion of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev. 26: 419 – 432.
Sauka, D.H., Cozzi, J.G. and Benintende, G.B. (2005). Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. An- tonie Van Leeuwenhoek, 88: 163–165.
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R. and Dean, D.H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775 – 806.
Shu, C., Zhang, J., Chen, G., Liang, G., He, K., Crickmore, N. et al. (2013). Use of a pooled clone method to isolate a novel Bacillus thuringiensis Cry2A toxin with activity against Ostrinia furnacalis. J. Invertebr. Pathol. 114: 31–33.
Somwatcharajit, R., Tiantad, I. and Panbangred, W. (2014). Coex- pression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera. J. Invertebr. Pathol. 116: 48–55.
Subramanian, S. and Mohunkumar, S. (2006). Genetic variability of the bollworm, Helicoverpa armigera, occurring on different host plants. J. Insect. Sci. 6: 26 –28.
Tabashnik, B.E., Fabrick, J.A., Unnithan, G.C., Yelich, A.J., Masson, L., Zhang, J. et al. (2013). Efficacy of genetically mod- ified Bt toxins alone and in combinations against pink boll worm resistant to Cry1Ac and Cry2Ab. PLoS ONE, 8: e80496.
Van Frankenhuyzen, K. (2013). Cross order and cross-phylum ac- tivity of Bacillus thuringiensis pesticidal proteins. J.