2024, Issue 7, Volume 16

PLANT EXTRACTS TITRATION WITH POTASSIUM PERMANGANATE TO DETERMINE ANTIOXIDANT CAPACITY

Pedroza-Escobar David1,2*, Molina-Ramírez Brenda-Sarahí1,3, Torres-Mendoza Danna-Sofia1,4, Hernández-Morales Cecilia5, Castillo-Maldonado Irais1, González-Cortés Tania1, Delgadillo-Guzmán Dealmy3, Ramírez-Moreno Agustina4, González-Luna Pedro IV5,Flores-Loyola Erika4, Haro-Santa Cruz Jorge1, Espino-Silva Perla-Karina1, Arellano Pérez Vertti Rubén Daniel3, Meza-Velázquez Rocío6 and Rosales-González Manuel-Gerardo6

1Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila Unidad Torreon,

Torreon, Mexico

2Centro de Actividades Multidisciplinarias de Prevención CAMP A.C.

3Facultad de Medicina, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico

4Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila Unidad Torreon,

Torreon, Mexico

5Facultad de Odontologia, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico

6Departamento de Investigacion, FACSA, Universidad Juarez del Estado de Durango,

Gomez Palacio, Mexico

Email: dpedroza@uadec.edu.mx

Received-26.06.2024, Revised-13.07.2024, Accepted-28.07.2024

Abstract: During cellular metabolism, some unstable molecules called free radicals are produced. Free radicals are capable of binding to other molecules and cellular structures, affecting their proper functioning, such as enzymes and cell membranes. On the contrary, cells have several systems to neutralize free radicals, for example molecules such as proteins and glutathione function as antioxidants capable of buffering the harmful effects of free radicals. An imbalance between free radicals and cellular antioxidants is known as oxidative stress. Oxidative stress has been associated with multiple diseases such as hypertension, diabetes, obesity, immunodeficiencies, cancer, etc. Currently, healthy lifestyles promote adequate nutrition and incorporate foods rich in antioxidants. Unfortunately, there is no method considered the gold standard for determining the antioxidant capacity of foods or substances. The methods used to determine antioxidant capacity use free radicals such as ORAC-PE, FRAP, TRAP, ABTS and DPPH. These methods are laborious and expensive, so the objective of this work is to evaluate potassium permanganate to determine the antioxidant capacity.

Keywords: Permanganate, Potassium, Gallic acid, Antioxidant capacity, Plant extracts

REFERENCES

Andrés, CMC; Pérez de la Lastra, JM; Andrés Juan, C; Plou, FJ and Pérez-Lebeña, E. (2023). Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity, Int J Mol Sci., 24(3):1841. doi: 10.3390/ijms24031841. PMID: 36768162; PMCID: PMC9916283.

Google Scholar

Averill-Bates, D.A. (2023). The antioxidant glutathione, Vitam Horm., 121:109-141. doi: 10.1016/ bs. vh. 2022.09.002. Epub 2023 Jan 13. PMID: 36707132.

Google Scholar

Barboza-Herrera, C; Castillo-Maldonado, I; Delgadillo-Guzmán, D; Vega-Menchaca, MDC; Haro-Santa Cruz, J; Ramírez-Moreno, A; Flores-Loyola, E; Avalos-Soto J; Téllez-López, M. and Pedroza-Escobar, D. (2021). Immunologic Adjuvant Activity of Neem Leaf Extract in Rats with Splenectomy, J. plant dev. sci., 13(11): 821-828.

Google Scholar

Bielli, A; Scioli, MG; Mazzaglia, D; Doldo, E. and Orlandi, A. (2015). Antioxidants and vascular health, Life Sci., 2015 Dec 15;143:209-16. doi: 10.1016/j.lfs.2015.11.012. Epub 2015 Nov 14. PMID: 26585821.

Google Scholar

Bojarczuk, A. and Dzitkowska-Zabielska, M. (2022). Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review, Nutrients, 15(1):158. doi: 10.3390/nu15010158. PMID: 36615815; PMCID: PMC9823453.

Google Scholar

Chesson, LA; Podlesak, DW; Thompson, AH; Cerling, TE. and Ehleringer, JR. (2008). Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: fast food meals, J Agric Food Chem, 56(11):4084-91. doi: 10.1021/jf0733618. Epub 2008 May 16. PMID: 18481865.

Google Scholar

Cramer, J; Sager, CP. and Ernst, B. (2019). Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group, J Med Chem, 62(20):8915-8930. doi: 10.1021/acs.jmedchem.9b00179. Epub 2019 May 28. PMID: 31083946.

Google Scholar

Dorado, G; Gálvez, S; Rosales, TE; Vásquez, VF. and Hernández, P. (2021). Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing – Review, Biomolecules, 11(8):1111. doi: 10.3390/biom11081111. PMID: 34439777; PMCID: PMC8393538.

Google Scholar

Eteiwi, SM; Al-Eyadah, AA; Al-Sarihin, KK; Al-Omari, AA; Al-Asaad, RA. and Haddad, FH. (2015). Potassium Permanganate Poisoning: A Nonfatal Outcome. Oman Med J., 30(4):291-4. doi: 10.5001/omj.2015.57. PMID: 26366264; PMCID: PMC4561647.

Google Scholar

Fernández-Pachón, MS; Villaño, D; Troncoso, AM. and García-Parrilla, MC. (2005). Antioxidant capacity of plasma after red wine intake in human volunteers, J Agric Food Chem, 53(12):5024-9. doi: 10.1021/jf0501995. PMID: 15941351.

Google Scholar

Forman, HJ. and Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy, Nat Rev Drug Discov, 20(9):689-709. doi: 10.1038/s41573-021-00233-1. Epub 2021 Jun 30. Erratum in: Nat Rev Drug Discov. 2021 Aug; 20(8):652. doi: 10.1038/s41573-021-00267-5. PMID: 34194012; PMCID: PMC8243062.

Google Scholar

Goodpaster, BH. and Sparks, LM. (2017). Metabolic Flexibility in Health and Disease, Cell Metab., 25(5):1027-1036. doi: 10.1016/j.cmet. 2017.04.015. PMID: 28467922; PMCID: PMC 5513193.

Google Scholar

Hajam, YA; Rani, R; Ganie, SY; Sheikh, TA; Javaid, D; Qadri, SS; Pramodh, S; Alsulimani, A; Alkhanani, MF; Harakeh, S; Hussain, A; Haque, S. and Reshi, MS. (2022). Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives, Cells, 11(3):552. doi: 10.3390/cells11030552. PMID: 35159361; PMCID: PMC8833991.

Google Scholar

Homolak, J; Kodvanj, I; Babic Perhoc, A; Virag, D; Knezovic, A; Osmanovic Barilar, J; Riederer, P. and Salkovic-Petrisic, M. (2021). Nitrocellulose redox permanganometry: A simple method for reductive capacity assessment, MethodsX, 9:101611. doi: 10.1016/j.mex. 2021.101611. PMID: 35004232; PMCID: PMC 8718987.

Google Scholar

Huang, D; Ou, B. and Prior, RL. (2005). The chemistry behind antioxidant capacity assays, J Agric Food Chem., 53(6):1841-56. doi: 10.1021/jf030723c. PMID: 15769103.

Google Scholar

Jomova, K; Makova, M; Alomar, SY; Alwasel, SH; Nepovimova, E; Kuca, K; Rhodes, CJ. and Valko, M. (2022) Essential metals in health and disease, Chem Biol Interact., 367:110173. doi: 10.1016/j.cbi.2022.110173. Epub 2022 Sep 22. PMID: 36152810.

Google Scholar

Jones, DP. (2008). Radical-free biology of oxidative stress, Am J Physiol Cell Physiol., 295(4):C849-68. doi: 10.1152/ajpcell.00283.2008. Epub 2008 Aug 6. PMID: 18684987; PMCID: PMC2575825.

Google Scholar

Kehrer, JP. (1993). Free radicals as mediators of tissue injury and disease, Crit Rev Toxicol., 23(1):21-48. doi: 10.3109/10408449309104073. PMID: 8471159.

Google Scholar

Kennelly, PJ; Botham, KM; McGuinness, OP; Rodwell, VW. and Weill, P. (2023). Harper’s Illustrated Biochemistry, 32e.; McGraw Hill: New York NY, 2023.

Google Scholar

Maret, W. and Blower, P. (2022). Teaching the chemical elements in biochemistry: Elemental biology and metallomics, Biochem Mol Biol Educ, 50(3):283-289. doi: 10.1002/bmb.21614. Epub 2022 Feb 26. PMID: 35218613; PMCID: PMC9303777.

Google Scholar

Munteanu, IG. and Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review, Int J Mol Sci., 22(7):3380. doi: 10.3390/ijms22073380. PMID: 33806141; PMCID: PMC8037236.

Google Scholar

Peñuelas, J; Fernández-Martínez, M; Ciais, P; Jou, D; Piao, S; Obersteiner, M; Vicca, S; Janssens, IA. and Sardans, J. (2019). The bioelements, the elementome, and the biogeochemical niche, Ecology, 100(5):e02652. doi: 10.1002/ecy.2652. Epub 2019 Mar 22. PMID: 30901088.

Google Scholar

Pinchuk, I; Shoval, H; Dotan, Y. and Lichtenberg, D. (2012). Evaluation of antioxidants: scope, limitations and relevance of assays, Chem Phys Lipids, 165(6):638-47. doi: 10.1016/j.chemphyslip.2012.05.003. Epub 2012 Jun 18. PMID: 22721987.

Google Scholar

Pisoschi, AM. and Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review, Eur J Med Chem., 97:55-74. doi: 10.1016/j.ejmech.2015.04.040. Epub 2015 Apr 22. PMID: 25942353.

Google Scholar

Prescher, JA. and Bertozzi, CR. (2005). Chemistry in living systems, Nat Chem Biol., (1):13-21. doi: 10.1038/nchembio0605-13. PMID: 16407987.

Google Scholar

Richardson, MB; Gabriel, KN; Garcia, JA; Ashby, SN; Dyer, RP; Kim, JK; Lau, CJ; Hong, J; Le Tourneau, RJ; Sen, S; Narel, DL; Katz, BB; Ziller, JW; Majumdar, S; Collins, PG. and Weiss, GA. (2020). Pyrocinchonimides Conjugate to Amine Groups on Proteins via Imide Transfer, Bioconjug Chem., 31(5):1449-1462. doi: 10.1021/acs.bioconjchem.0c00143. Epub 2020 Apr 30. PMID: 32302483; PMCID: PMC7337330.

Google Scholar

Rumpf, J; Burger, R. and Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins, Int J Biol Macromol, 233:123470. doi: 10.1016/j.ijbiomac.2023.123470. Epub 2023 Feb 2. PMID: 36736974.

Google Scholar

Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine, Redox Biol., 4:180-3. doi: 10.1016/j.redox.2015.01.002. Epub 2015 Jan 3. PMID: 25588755; PMCID: PMC4309861.

Google Scholar

Sies, H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress, Redox Biol.,11:613-619. doi: 10.1016/j.redox.2016.12.035. Epub 2017 Jan 5. PMID: 28110218; PMCID: PMC5256672.

Google Scholar

Trivedi, MV; Laurence, JS. and Siahaan, TJ. (2009). The role of thiols and disulfides on protein stability, Curr Protein Pept Sci., 6:614-25. doi: 10.2174/138920309789630534. PMID: 19538140; PMCID: PMC3319691.

Google Scholar

Wang, N; Tan, HY; Li, S; Xu, Y; Guo, W. and Feng, Y. (2017). Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant, Oxid Med Cell Longev., 2017:7478523. doi: 10.1155/2017/7478523. Epub 2017 Dec 26. PMID: 29441149; PMCID: PMC5758946.

Google Scholar

Williams, RJ. (1997). The natural selection of the chemical elements, Cell Mol Life Sci. 53(10):816-829. doi:10.1007/s000180050102.

Google Scholar

Yang, J; Zhou, R. and Ma, Z. (2019). Autophagy and Energy Metabolism, Adv Exp Med Biol., 1206:329-357. doi: 10.1007/978-981-15-0602-4_16. PMID: 31776993.

Google Scholar

Yu, J; Su, NQ. and Yang, W. (2022). Describing Chemical Reactivity with Frontier Molecular Orbitalets, JACS Au, 2(6):1383-1394. doi: 10.1021/jacsau.2c00085. PMID: 35783161; PMCID: PMC9241161.

Google Scholar

Zhang, M; Liu, N. and Liu, H. (2014). Determination of the total mass of antioxidant substances and antioxidant capacity per unit mass in serum using redox titration, Bioinorg Chem Appl., 2014:928595. doi: 10.1155/2014/928595. Epub 2014 Jul 20. PMID: 25140122; PMCID: PMC4129143.

Google Scholar