

RESEARCH

PLANT EXTRACTS TITRATION WITH POTASSIUM PERMANGANATE TO DETERMINE ANTIOXIDANT CAPACITY

Pedroza-Escobar David^{1,2*}, Molina-Ramírez Brenda-Sarahí^{1,3}, Torres-Mendoza Danna-Sofía^{1,4}, Hernández-Morales Cecilia⁵, Castillo-Maldonado Irais¹, González-Cortés Tania¹, Delgadillo-Guzmán De almy³, Ramírez-Moreno Agustina⁴, González-Luna Pedro IV⁵, Flores-Loyola Erika⁴, Haro-Santa Cruz Jorge¹, Espino-Silva Perla-Karina¹, Arellano Pérez Vertti Rubén Daniel³, Meza-Velázquez Rocío⁶ and Rosales-González Manuel-Gerardo⁶

¹*Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico*

²*Centro de Actividades Multidisciplinarias de Prevención CAMP A.C.*

³*Facultad de Medicina, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico*

⁴*Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico*

⁵*Facultad de Odontologia, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico*

⁶*Departamento de Investigacion, FACSA, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
Email: dpedroza@uadec.edu.mx*

Received-26.06.2024, Revised-13.07.2024, Accepted-28.07.2024

Abstract: During cellular metabolism, some unstable molecules called free radicals are produced. Free radicals are capable of binding to other molecules and cellular structures, affecting their proper functioning, such as enzymes and cell membranes. On the contrary, cells have several systems to neutralize free radicals, for example molecules such as proteins and glutathione function as antioxidants capable of buffering the harmful effects of free radicals. An imbalance between free radicals and cellular antioxidants is known as oxidative stress. Oxidative stress has been associated with multiple diseases such as hypertension, diabetes, obesity, immunodeficiencies, cancer, etc. Currently, healthy lifestyles promote adequate nutrition and incorporate foods rich in antioxidants. Unfortunately, there is no method considered the gold standard for determining the antioxidant capacity of foods or substances. The methods used to determine antioxidant capacity use free radicals such as ORAC-PE, FRAP, TRAP, ABTS and DPPH. These methods are laborious and expensive, so the objective of this work is to evaluate potassium permanganate to determine the antioxidant capacity.

Keywords: Permanganate, Potassium, Gallic acid, Antioxidant capacity, Plant extracts

INTRODUCTION

A chemical element is any substance that cannot be broken down into a simpler substance by any ordinary chemical process (Kennelly et al., 2023; Williams, 1997; Jomova et al., 2022). Those elements found inside a cell are known as bioelements (Páñuelas et al., 2019; Maret & Blower, 2022). The main bioelements are carbon, hydrogen, oxygen, nitrogen, phosphorus and sulfur (Chesson et al., 2008). Some bioelements join with other bioelements to form chemical groups, for example, the hydroxyl group is formed by oxygen and hydrogen (-OH), the sulfhydryl group is formed by sulfur and hydrogen (-SH), the amino group is formed by nitrogen and two hydrogens (-NH₂), and so on (Cramet et al., 2019; Trivendi et al., 2009; Richardson et al., 2020; Prescher & Bertozzi, 2005).

When chemical groups are attached to a carbon structure, the resulting compound is known as a biomolecule (Dorado et al., 2021). Based on the chemical groups present in a biomolecule, the biomolecule is classified into carbohydrates, lipids and proteins, which are the main components of all cellular structures and metabolism (Goodpaster & Sparks, 2017; Yang et al., 2019). Chemical groups are responsible for the chemical reactivity and physical-chemical characteristics of biomolecules (Yu et al., 2022). Under normal conditions, during cellular metabolism, certain unbalanced atoms or molecules are produced, for example, superoxide (O₂⁻), hydrogen peroxide (H₂O₂), and other free radicals. Those components that destabilize other molecules are known as free radicals (Andrés et al., 2023; Sies, 2017; Kehler, 1993). The cell has several mechanisms to deal with free radicals, for

*Corresponding Author

instance, glutathione is a buffer against oxidative damage caused by reactive oxygen species such as free radicals and peroxides (Averill-Bates, 2023; Bielli et al., 2015). An imbalance between free radicals and cellular antioxidants is known as oxidative stress (Pisoschi, 2015; Sies, 2015). Oxidative stress has been associated with multiple diseases such as hypertension, diabetes, obesity, immunodeficiencies, cancer, etc. (Forman & Zhang, 2021; Jones, 2008; Hajam et al., 2022). Currently, healthy lifestyles promote adequate nutrition and incorporate foods rich in antioxidants (Bojarczuk&Dzitkowska-Zabielska, 2022; Wang et al., 2017). Unfortunately, there is no method that is considered the gold standard for determining the antioxidant capacity of foods or substances (Pinchuk, et al., 2012). The methods used to determine antioxidant capacity employ free radicals such as ORAC-PE, FRAP, TRAP, ABTS and DPPH (Fernández-Pachón et al., 2005; Rumpf, et al., 2023; Munteanu &Apetrei, 2021; Huang et al., 2005). These methods are laborious and expensive, so the objective of this work was to evaluate potassium permanganate to determine the antioxidant capacity.

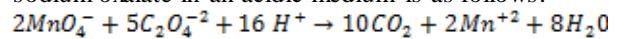
MATERIALS AND METHODS

Neem extracts

Fresh samples of *Azadirachta indica* (Neem) were used to prepare extracts from various parts of the plant. The samples collected were 800 g of neem leaves, 500 g of neem bark, 500 g of neem fruit, 200 g of neem seed, and 200 g of neem flower. They were collected during the months of March and April in the city of Lerdo (Durango, Mexico) from a local vivarium. After being collected, the samples were rinsed several times with tap water, separated, and allowed to dry at room temperature. Once dry, the samples were ground with a manual mill, and mixed in a 1:10 solution with hot distilled water at 60° C for 1 h, then filtered with a Whatman number 40 filter and left to dry in a hot air oven at a temperature of 40° C for a period of 7 days.

Phytochemical tests

These tests were qualitative to identify the main chemical groups of organic compounds present in plant extracts. The principle of these tests is based on chemical reactions between the functional chemical groups of organic compounds present in plant extracts and chemical reagents that lead to the formation of precipitates or colored substances. The following determinations were made in accordance with methodology published elsewhere (Barboza-Herrera et al., 2021): 1) Alkaloids (Dragendorff and Mayer's method); 2) Aldehydes (Tollens' method); 3) Carbohydrates (Brady's method); 4) Flavonoids (Magnesium method); 5) Sterols (Liebermann-Burchard's


method); 6) Tannins (Indirect precipitation method); and 7) Terpenoids (Chloroform method).

Potassium permanganate titration

A 0.25 M KMnO₄ solution was standardized with 134 mg sodium oxalate. The following formula was used to calculate the Normality concentration.

$$N = nM$$

Where N refers to Normality, n refers to the quantity of equivalents and M refers to Molarity. the Normal concentration of the KMnO₄ solution was 1.25 according to the reduction of Mn⁺⁷ to Mn⁺² with n=5. Sodium oxalate is a primary standard *i.e.* a reagent which can be easily weighed, and is so pure that its weight is truly representative of the number of moles of substance contained. The oxidation-reduction reaction of KMnO₄ and sodium oxalate in an acidic medium is as follows:

The standardization of the KMnO₄ solution considered the following formula

$$KMnO_4 \text{ Normality} = \frac{(mg \text{ primary standard})}{(equivalents of primary standard)} \cdot \frac{(Molecular weight of primary standard)}{(mL of KMnO_4)}$$

The standardized KMnO₄ solution was used to titrate 50 mL of aqueous solutions of neem extracts at a concentration of 200 mg/L. These solutions were prepared in 3N H₂SO₄. The neem extracts used in this study were leaves, bark, fruit, seed and flower. After titration with potassium permanganate, the Normal concentration was calculated with the following formula

$$V_{KMnO_4} C_{KMnO_4} = V_{sample} C_{sample}$$

Where the volumes (V) of KMnO₄ and the plant extract solution samples were measured in mL, and their concentrations in Normality. Once the samples were titrated and the normal concentrations were calculated, the redox equivalents were determined considering that the definition of normality is the number of equivalents of a solute divided by the volume of the solution in liters according to the following formula

$$n = NL$$

Where n refers to the quantity of equivalents, N refers to the Normal concentration and L to the volume of the solution in liters. Finally, the number of redox equivalents per gram of dry extract was calculated with the following formula

$$Redox \text{ equivalents per gram} = \frac{n}{grams \text{ of extract}}$$

Another alternative method to calculate antioxidant capacity was gallic acid equivalents. The standardized KMnO₄ solution was used to titrate 50 mL of neem extract solutions at a concentration of 200 mg/L. The results were interpolated against a standard curve of a serial dilution of gallic acid (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0

mM), which was titrated with the standardized KMnO₄ solution. The statistical analysis was descriptive through mean values of the variables under study; and a linear regression to calculate the gallic acid equivalents.

Table 1. Phytochemical tests of the Neem extracts.

Phytochemical test	Neem extracts				Flower
	Leaves	Bark	Fruit	Seed	
Alkaloids	-	-	-	-	-
Aldehydes	-	-	-	-	-
Carbohydrates	+	+	+	+	+
Flavonoids	+	+	+	+	+
Sterols	-	-	-	+	-
Tannins	+	+	-	+	-
Terpenoids	+	+	+	-	+

+ positive, - negative.

The analysis of antioxidant capacity showed a similar trend between the results obtained as redox equivalents and gallic acid equivalents as appears in Table 2. The volume of the titrant (KMnO₄) and the concentration of gallic acid were used to

RESULTS AND DISCUSSION

The qualitative phytochemical tests of the aqueous extracts of neem leaves, bark, fruit, seed, and flower allowed identification of the presence of carbohydrates, flavonoids, sterols, tannins and terpenes as shown in Table 1.

Table 2. Analysis of antioxidant capacity by potassium permanganate titration.

Neem extract	Normality of titrated solution	mEq in the titrated solution	Redox equivalents per gram of dry extract	Gallic acid equivalents (mM)
Leaves	0.0025	0.125	12.5	0.1135
Bark	0.0025	0.125	12.5	0.1135
Fruit	0.005	0.25	25	0.2113
Seed	0.005	0.25	25	0.2113
Flower	0.0075	0.375	37.5	0.3092

The KMnO₄ is a chemical compound formed by potassium ions (K⁺) and permanganate (MnO⁻⁴). In addition, it is a strong oxidizing agent with an intense violet color, so it works as an auto indicator (Eteiwi et al., 2015). A violet solution of MnO⁻⁴ is easily reduced to a colorless solution of Mn⁺² (Zhang et al., 2014). It has a very high standard reduction potential; therefore, it is a very strong oxidant and can oxidize any compound with a lower standard reduction potential (Homolak et al., 2021). Normality in chemistry is a unit of concentration of a solution and is defined as the relationship among the equivalents of a substance and the liters of that solution. Normality is a measure of reactive capacity. An equivalent refers to the amount of the solute that will react with a known amount of another reactant. Normality is frequently used for oxidation-reduction reactions in which electrons are transferred from one reactant to another. In this work, the end point of the titration of the tested plant extracts was indicated by the

perform a linear regression ($r=0.96$). The neem flower extract exhibited the highest antioxidant capacity, followed by the fruit and bark extracts. The neem leaves and bark extracts exhibited the lowest antioxidant capacity.

appearance of a permanent light pink color due to a slight excess of potassium permanganate solution. Among the limitations of this work, it is worth mentioning that some plant extracts are rich in pigments that can mask the end point of the permanganate titration. Additionally, some compounds in plant extracts can form brown magnesium oxide, which could mask the end point of the titration. Consequently, plant extracts should be selected with caution for titration with this method.

CONCLUSION

Extracts from neem leaves, bark, fruit, seed, and flowers were prepared and analyzed by potassium permanganate titration, and the results were expressed as redox equivalents and gallic acid equivalents. The results of both types of equivalents showed a similar trend. Thus, in this research work, the usefulness of KMnO₄ was

demonstrated to determine the antioxidant capacity of plants extracts.

ACKNOWLEDGEMENTS

The authors thank to the “Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCyT)” and the “Sistema Nacional de Investigadoras e Investigadores” for the support provided, to the program “Programa para el Desarrollo Profesional Docente” for its support to the IDCA 30772, CLAVE UACOAH-CA-129. To the “Dirección de Investigación y Posgrado (Universidad Autónoma de Coahuila; Torreón, Mexico)” for the support provided for the publication of this manuscript.

REFERENCES

Andrés, CMC; Pérez de la Lastra, JM; Andrés Juan, C; Plou, FJ and Pérez-Lebeña, E. (2023). Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity, *Int J Mol Sci.*, **24**(3):1841. doi: 10.3390/ijms24031841. PMID: 36768162; PMCID: PMC9916283.

[Google Scholar](#)

Averill-Bates, D.A. (2023). The antioxidant glutathione, *Vitam Horm.*, **121**:109-141. doi: 10.1016/bs.vh.2022.09.002. Epub 2023 Jan 13. PMID: 36707132.

[Google Scholar](#)

Barboza-Herrera, C; Castillo-Maldonado, I; Delgadillo-Guzmán, D; Vega-Menchaca, MDC; Haro-Santa Cruz, J; Ramírez-Moreno, A; Flores-Loyola, E; Avalos-Soto J; Téllez-López, M and Pedroza-Escobar, D. (2021). Immunologic Adjuvant Activity of Neem Leaf Extract in Rats with Splenectomy, *J. plant dev. sci.*, **13**(11): 821-828.

[Google Scholar](#)

Bielli, A; Scioli, MG; Mazzaglia, D; Doldo, E and Orlandi, A. (2015). Antioxidants and vascular health, *Life Sci.*, 2015 Dec 15;143:209-16. doi: 10.1016/j.lfs.2015.11.012. Epub 2015 Nov 14. PMID: 26585821.

[Google Scholar](#)

Bojarczuk, A. and Dzitkowska-Zabielska, M. (2022). Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review, *Nutrients*, **15**(1):158. doi: 10.3390/nu15010158. PMID: 36615815; PMCID: PMC9823453.

[Google Scholar](#)

Chesson, LA; Podlesak, DW; Thompson, AH; Cerling, TE and Ehleringer, JR. (2008). Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: fast food meals, *J Agric Food Chem.*, **56**(11):4084-91. doi: 10.1021/jf0733618. Epub 2008 May 16. PMID: 18481865.

[Google Scholar](#)

Cramer, J; Sager, CP. and Ernst, B. (2019). Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group, *J Med Chem.*, **62**(20):8915-8930. doi: 10.1021/acs.jmedchem.9b00179. Epub 2019 May 28. PMID: 31083946.

[Google Scholar](#)

Dorado, G; Gálvez, S; Rosales, TE; Vásquez, VF. and Hernández, P. (2021). Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing – Review, *Biomolecules*, **11**(8):1111. doi: 10.3390/biom11081111. PMID: 34439777; PMCID: PMC8393538.

[Google Scholar](#)

Eteiwi, SM; Al-Eyadah, AA; Al-Sarihin, KK; Al-Omari, AA; Al-Asaad, RA. and Haddad, FH. (2015). Potassium Permanganate Poisoning: A Nonfatal Outcome. *Oman Med J.*, **30**(4):291-4. doi: 10.5001/omj.2015.57. PMID: 26366264; PMCID: PMC4561647.

[Google Scholar](#)

Fernández-Pachón, MS; Villaño, D; Troncoso, AM and García-Parrilla, MC. (2005). Antioxidant capacity of plasma after red wine intake in human volunteers, *J Agric Food Chem.*, **53**(12):5024-9. doi: 10.1021/jf0501995. PMID: 15941351.

[Google Scholar](#)

Forman, HJ. and Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy, *Nat Rev Drug Discov.*, **20**(9):689-709. doi: 10.1038/s41573-021-00233-1. Epub 2021 Jun 30. Erratum in: *Nat Rev Drug Discov.* 2021 Aug; 20(8):652. doi: 10.1038/s41573-021-00267-5. PMID: 34194012; PMCID: PMC8243062.

[Google Scholar](#)

Goodpaster, BH. and Sparks, LM. (2017). Metabolic Flexibility in Health and Disease, *Cell Metab.*, **25**(5):1027-1036. doi: 10.1016/j.cmet.2017.04.015. PMID: 28467922; PMCID: PMC5513193.

[Google Scholar](#)

Hajam, YA; Rani, R; Ganie, SY; Sheikh, TA; Javaid, D; Qadri, SS; Pramodh, S; Alsulimani, A; Alkhanani, MF; Harakeh, S; Hussain, A; Haque, S. and Reshi, MS. (2022). Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives, *Cells*, **11**(3):552. doi: 10.3390/cells11030552. PMID: 35159361; PMCID: PMC8833991.

[Google Scholar](#)

Homolak, J; Kodvanj, I; Babic Perhac, A; Virag, D; Knezovic, A; Osmanovic Barilar, J; Riederer, P. and Salkovic-Petrisic, M. (2021). Nitrocellulose redox permanganometry: A simple method for reductive capacity assessment, *MethodsX*, **9**:101611. doi: 10.1016/j.mex.

2021.101611. PMID: 35004232; PMCID: PMC 8718987.

[Google Scholar](#)

Huang, D; Ou, B. and Prior, RL. (2005). The chemistry behind antioxidant capacity assays, *J Agric Food Chem.*, **53**(6):1841-56. doi: 10.1021/jf030723c. PMID: 15769103.

[Google Scholar](#)

Jomova, K; Makova, M; Alomar, SY; Alwasel, SH; Nepovimova, E; Kuca, K; Rhodes, CJ. and Valko, M. (2022) Essential metals in health and disease, *Chem Biol Interact.*, **367**:110173. doi: 10.1016/j.cbi.2022.110173. Epub 2022 Sep 22. PMID: 36152810.

[Google Scholar](#)

Jones, DP. (2008). Radical-free biology of oxidative stress, *Am J Physiol Cell Physiol.*, **295**(4):C849-68. doi: 10.1152/ajpcell.00283.2008. Epub 2008 Aug 6. PMID: 18684987; PMCID: PMC2575825.

[Google Scholar](#)

Kehrer, JP. (1993). Free radicals as mediators of tissue injury and disease, *Crit Rev Toxicol.*, **23**(1):21-48. doi: 10.3109/10408449309104073. PMID: 8471159.

[Google Scholar](#)

Kennelly, PJ; Botham, KM; McGuinness, OP; Rodwell, VW. and Weill, P. (2023). Harper's Illustrated Biochemistry, 32e.; McGraw Hill: New York NY, 2023.

[Google Scholar](#)

Maret, W. and Blower, P. (2022). Teaching the chemical elements in biochemistry: Elemental biology and metallomics, *Biochem Mol Biol Educ.*, **50**(3):283-289. doi: 10.1002/bmb.21614. Epub 2022 Feb 26. PMID: 35218613; PMCID: PMC9303777.

[Google Scholar](#)

Munteanu, IG. and Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review, *Int J Mol Sci.*, **22**(7):3380. doi: 10.3390/ijms22073380. PMID: 33806141; PMCID: PMC8037236.

[Google Scholar](#)

Peñuelas, J; Fernández-Martínez, M; Ciais, P; Jou, D; Piao, S; Obersteiner, M; Vicca, S; Janssens, IA. and Sardans, J. (2019). The bioelements, the elementome, and the biogeochemical niche, *Ecology*, **100**(5):e02652. doi: 10.1002/ecy.2652. Epub 2019 Mar 22. PMID: 30901088.

[Google Scholar](#)

Pinchuk, I; Shoval, H; Dotan, Y. and Lichtenberg, D. (2012). Evaluation of antioxidants: scope, limitations and relevance of assays, *Chem Phys Lipids*, **165**(6):638-47. doi: 10.1016/j.chemphyslip.2012.05.003. Epub 2012 Jun 18. PMID: 22721987.

[Google Scholar](#)

Pisoschi, AM. and Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review, *Eur J Med Chem.*, **97**:55-74. doi: 10.1016/j.ejmech.2015.04.040. Epub 2015 Apr 22. PMID: 25942353.

[Google Scholar](#)

Prescher, JA. and Bertozzi, CR. (2005). Chemistry in living systems, *Nat Chem Biol.*, **1**(1):13-21. doi: 10.1038/nchembio0605-13. PMID: 16407987.

[Google Scholar](#)

Richardson, MB; Gabriel, KN; Garcia, JA; Ashby, SN; Dyer, RP; Kim, JK; Lau, CJ; Hong, J; Le Tourneau, RJ; Sen, S; Narel, DL; Katz, BB; Ziller, JW; Majumdar, S; Collins, PG. and Weiss, GA. (2020). Pyrocinchonimides Conjugate to Amine Groups on Proteins via Imide Transfer, *Bioconjug Chem.*, **31**(5):1449-1462. doi: 10.1021/acs.bioconjchem.0c00143. Epub 2020 Apr 30. PMID: 32302483; PMCID: PMC7337330.

[Google Scholar](#)

Rumpf, J; Burger, R. and Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins, *Int J Biol Macromol.*, **233**:123470. doi: 10.1016/j.ijbiomac.2023.123470. Epub 2023 Feb 2. PMID: 36736974.

[Google Scholar](#)

Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine, *Redox Biol.*, **4**:180-3. doi: 10.1016/j.redox.2015.01.002. Epub 2015 Jan 3. PMID: 25588755; PMCID: PMC4309861.

[Google Scholar](#)

Sies, H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress, *Redox Biol.*, **11**:613-619. doi: 10.1016/j.redox.2016.12.035. Epub 2017 Jan 5. PMID: 28110218; PMCID: PMC5256672.

[Google Scholar](#)

Trivedi, MV; Laurence, JS. and Sahaan, TJ. (2009). The role of thiols and disulfides on protein stability, *Curr Protein Pept Sci.*, **6**:614-25. doi: 10.2174/138920309789630534. PMID: 19538140; PMCID: PMC3319691.

[Google Scholar](#)

Wang, N; Tan, HY; Li, S; Xu, Y; Guo, W. and Feng, Y. (2017). Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant, *Oxid Med Cell Longev.*, **2017**:7478523. doi: 10.1155/2017/7478523. Epub 2017 Dec 26. PMID: 29441149; PMCID: PMC5758946.

[Google Scholar](#)

Williams, RJ. (1997). The natural selection of the chemical elements, *Cell Mol Life Sci.* **53**(10):816-829. doi:10.1007/s000180050102.

[Google Scholar](#)

Yang, J; Zhou, R. and Ma, Z. (2019). Autophagy and Energy Metabolism, *Adv Exp Med Biol.*,

1206:329-357. doi: 10.1007/978-981-15-0602-4_16. PMID: 31776993.

[Google Scholar](#)

Yu, J; Su, NQ. and Yang, W. (2022). Describing Chemical Reactivity with Frontier Molecular Orbitalets, *JACS Au*, 2(6):1383-1394. doi: 10.1021/jacsau.2c00085. PMID: 35783161; PMCID: PMC9241161.

[Google Scholar](#)

Zhang, M; Liu, N. and Liu, H. (2014). Determination of the total mass of antioxidant substances and antioxidant capacity per unit mass in serum using redox titration, *Bioinorg Chem Appl.*, 2014:928595. doi: 10.1155/2014/928595. Epub 2014 Jul 20. PMID: 25140122; PMCID: PMC4129143.

[Google Scholar](#)