Hem. C. Joshi1*, Alok Sukla1,S.K. Guru1 ,K.P. Singh2, Prashant Singh3
1Department of Plant Physiology, College of Basic Sciences and Humanities, G.B.P.U.A & T Pantnagar, U.S.Nagar (263145), Uttrakhand, India
2Membrane Biophysics and Nanobiosensor Research Laboratory, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar,
Udham Singh Nagar -263145, India.
3Department of Biotechnology, Bhimtal Campus, Kumaun University,
Nainital, Uttarakhand, India
Email: hembiophysics12@gmail.com
Received-21.06.2017, Revised-02.08.2017
Abstract: Indian agriculture, passing through various revolutions ,has made appreciable achievement in terms of production & productivity ,availability of food grains, horticultural produce,milk,meat & fish which has been possible through technological interventions and critical role played by Indian council of agriculture research (ICAR) .although are continue to be the same to 40million hectares for the last 40 years, production has increased apparently .the production of food crop has increased 4.5 times ,many of the crops which were not known before, have emerged as important, and we have become leader. Despite numerous challenges and short comings the horticulture has exhibited impressive growth. If Indian agriculture has to attain its board national goal of sustainable growth, it is important that the nanotechnology research is extended to the total agricultural production consumption system that is across the entire agricultural value chain. Nanotechnology in agriculture could be used for enhancing the efficiency of the technologies; this includes nanoparticle based disease diagnostics, nano-insecticides for insect pest control, nano-formulation for nutritional studies & various other aspects.Nanomanufacturing makes Nanoscale building blocks including nanoparticles, nanotubes &nanostructures.Nanoparticle can be formed by either milling of large particle or by directly chemical synthesis.however carbon nano tubes and most nanoparticle are synthesized directly from liquid or vapor phases.Chemical & physical vapor phase synthesis is well-established technologies for large scale production of metal, metal oxide and ceramic nanoparticles.The recent development in plant science that focused on the role of nanoparticle in plant growth & development and also on plant mechanism.
Keywords: NPs (nanoparticles), QDs (quantum dots), CNTs (carbon nanotubes), MWCNTs (multi-walled-CNTs)
REFERENCES
Anjum, N.A., Singh, N., Singh, M.K., Sayeed, I., Duarte, A.C., Pereira, E. and Ahmad, I. (2014). Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841
Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P.K. and Zaidi, M.G.H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310
Bao-shan, L., Shao-qi, D., Chun-hui, L., Li-jun, F., Shu-chun, Q. and Min, Y. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J Forest Res 15:138–140
Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A. and Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857
Begum, P. and Fugetsu, B. (2012). Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolorL) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222
Begum, P., Ikhtiari, R. and Fugetsu, B. (2014). Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4(2):203–221
Burman, U., Saini, M. and Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612
Cañas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E.H. and Olszyk, D. (2008). Effects of functionalized and nonfunctionalized single walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931
Carmen, I.U., Chithra, P., Huang, Q., Takhistov, P., Liu, S. and Kokini, J.L. (2003). Nanotechnology: a new frontier in food science. Food Technol 57:24–29
Christou, P., McCabe, D.E. and Swain, W.F. (1988) Stable transformation of soybean callus by DNAcoated gold particles. Plant Physiol 87:671–674
Crabtree, R.H. (1998). A new type of hydrogen bond. Science 282:2000–2001
DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R. and Sultan, Y. (2010). Nanotechnology in fertilizers. Nat Nanotechnol 5:91. doi:10.1038/nnano.2010.2
Dhoke, S.K., Mahajan, P., Kamble, R. and Khanna, A. (2013). Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1
Dimkpa, C.O., McLean, J.E., Latta, D.E., Manangón, E., Britt, D.W., Johnson, W.P., Boyanov, M.I. and Anderson, A.J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14(9):1–15
Feizi, H., Kamali, M., Jafari, L., Rezvani and Moghaddam, P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgareMill). Chemosphere 91(4):506–511
Gajanan, G., Deuk, S.Y., Donghee, P. and Sung, L.D. (2010). Phytotoxicity of carbon nanotubes assessed by Brassica Junceaand Phaseolus Mungo. J Nanoelectron Optoelectron 5:157–160
Galbraith, D.W. (2007). Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273
Gao, F.Q., Hong, F.S., Liu, C., Zheng, L. and Su, M.Y. (2006). Mechanism of nano-anatase TiO2on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111:286–301
Gao, F.Q., Liu, C., Qu, C.X., Zheng, L., Yang, F., Su, M.G. and Hong, F.H. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 21:211–217
Giraldo, J.P., Landry, M.P., Faltermeier, S.M., McNicholas, T.P., Iverson, N.M., Boghossian, A.A., Reuel, N.F., Hilmer, A.J., Sen, F., Brew, J.A. and Strano, M.S. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. doi:10.1038/nmat3890
Gopinath, K., Gowri, S., Karthika, V. and Arumugam, A. (2014). Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4: 1–11
Govorov, A.O. and Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7(3):620–625
Gruyer, N., Dorais, M., Bastien, C., Dassylva, N. and Triffault-Bouchet, G. (2013). Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory–greensys, Jeju, Korea, 6–11 Oct 2013
Haghighi, M., Afifipour, Z. and Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90
Helaly, M.N., El-Metwally, M.A., El-Hoseiny, H., Omar, S.A. and El-Sheery, N.I. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624
Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L. and Yang, P. (2005a). Effect of nano-TiO2on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279
Hong, F.S., Yang, F., Ma, Z.N., Zhou, J., Liu, C., Wu, C. and Yang, P. (2005b). Influences of nano-TiO2on the chloroplast ageing of spinach under light. Biol Trace Elem Res 104(3):249–260
Husen, A. and Siddiqi , K.S. (2014). Carbon and fullerene nanomaterials in plant system. J Nanotechnol 12:1–10
Ikhtiar, R., Begum, P., Watari, F. and Fugetsu, B. (2013). Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca Sativa). Nano Biomed 5:18–24
Jaberzadeh, A., Moaveni, P., Moghadam, H.R.T. and Zahedi, H. (2013). Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41:201–207
Juhel, G., Batisse, E., Hugues, Q., Daly, D., van, Pelt, F.N., O’Halloran, J. and Jansen, M.A. (2011). Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105(3):328–336
Kahn, Jennifer (2006). welcome to the world of nanotechnology .national geographic, 209(6):98-119
Kalteh, M., Alipour, Z.T., Ashraf, S., Aliabadi, M.M. and Nosratabadi, A.F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55
Karuppanapandian, T., Wang, H.W., Prabakaran, N., Jeyalakshmi, K., Kwon, M., Manoharan, K. and Kim, W. (2011). 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49(2):168–177
Ke, P.C., Lin, S., Reppert, J., Rao, A.M. and Luo, H. (2011). Uptake of carbon-based nanoparticles by mammalian cells and plants. In: Sattler KD (ed) Handbook of nanophysics: nanomedicine and nanorobotics, CRC Press, New York, pp 1–30
Khodakovskaya, M.V., de, Silva, K., Biris, A.S., Dervishi, E. and Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135
Khodakovskaya, M.V., Kim, B.S., Kim, J.N., Alimohammadi, M., Dervishi, E., Mustafa, T. and Cernigla, C.E. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123
Kim, J.H., Lee, Y., Kim, E.J., Gu, S., Sohn, E.J., Seo, Y.S., An, H.J. and Chang, Y.S. (2014). Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48(6):3477–3485
Kirschbaum, M.U.F. (2011). Does enhanced photosynthesis enhance growth? lessons learned from CO2enrichment studies. Plant Physiol 155:117–124
Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N. and Kalaichelvan, P.T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri(Linn.) Wettst. Plant growth metabolism. Process Biochem 47(4):51–658
Kumar, V., Guleria, P., Kumar, V. and Yadav, S.K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468
Lahiani, M.H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A.S. and Khodakovskaya, M.V. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973
Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J. and Alvarez, P.J.J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675
Mendez , U.O. (2012). Handbook of less common nanostructures.CRC press 383-429
Monica, R.C. and Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia 62(2):161–165
Morla, S., Ramachandra, Rao, C.S.V., Chakrapani, R. (2011). Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Bio Phys Sci B 1:328–334
Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. (2010). Nanoparticulate material delivery to plants. Plant Sci 179:154–163
Nalwade, A.R. and Neharkar, S.B. (2013). Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. Int J Adv Sci Tech Res 3:840–846
Noji, T., Kamidaki, C., Kawakami, K., Shen, J.R., Kajino, T., Fukushima, Y., Sekitoh, T. and Itoh, S. (2011). Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27(2):705–713
Patra, P., Choudhury, S.R., Mandal, S., Basu, A., Goswami, A., Gogoi, R., Srivastava, C., Kumar, R. and Gopal, M. (2013). Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Advanced Nanomaterials and Nanotechnology, Springer Berlin Heidelberg, pp. 301-309
Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S.P., Sajanlal, R. and Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927
Qi, M., Liu, Y. and Li, T. (2013). Nano-TiO2improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328
Raliya, R. and Tarafdar, J.C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonolobaL.). Agric Res 2:48–5
Roco, M.C. (2006). Nanotechnology future sci Am.,295(2):21
Shah, V. and Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148
Sharma, P., Bhatt, D., Zaidi, M.G., Saradhi, P.P., Khanna, P.K. and Arora, S. (2012). Silver nanoparticlemediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233
Sheykhbaglou, R., Sedghi, M., Shishevan, M.T. and Sharifi, R.S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2(2):112–113
Siddiqui, M.H. and Al-Whaibi, M.H. (2014). Role of nano-SiO2in germination of tomato (Lycopersicum esculentumseeds Mill.). Saudi Biol Sci 21:13–17
Siddiqui, M.H., Al-Whaibi, M.H., Faisal, M. and Al Sahli, A.A. (2014). Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepoL. Environ Toxicol Chem 33(11):2429–2437. doi:10.1002/etc.2697
Siddiqui, M.H., Mohammad, F., Khan, M.M.A. and Al-Whaibi, M.H. (2012). Cumulative effect of nitrogen and sulphur on Brassica junceaL. genotypes under NaCl stress. Protoplasma 249:139–153
Smirnova, E., Gusev, A., Zaytseva, O., Sheina, O., Tkachev, A., Kuznetsova, E., Lazareva, E., Onishchenko, G., Feofanov, A. and Kirpichnikov, M. (2012). Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenariaseedlings. Front Chem Sci Eng 6:132–138
Song, G., Gao, Y., Wu, H., Hou, W., Zhang, C. and Ma, H. (2012). Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31(9):2147–2152
Srinivasan, C., Saraswathi, R. (2010). Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275
Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., Kannan, N. (2012). Silica nanoparticles for increased silica availability in maize (Zea maysL) seeds under hydroponic conditions. Curr Nanosci 8:902–908
Subramanian, V., Porter, A.L. and Shapira, P. (2010). is there a shift to “Active nanostructures”? J.nanopart res.12:1-10
Syu, Y.Y., Hung, J.H., Chen, J.C. and Chuang, H.W. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsisplant growth and gene expression. Plant Physiol Biochem 83:57–64
Tiwari, D.K., Dasgupta–Schubert, N., Villaseñor, L.M., Tripathi, D. and Villegas, J. (2013). Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Studies 7:87–96
Tiwari, D.K., Dasgupta-Schubert, N., Villaseñor-Cendejas, L.M., Villegas, J., Carreto-Montoya, L. and Borjas-García, S.E. (2014). Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nanoagriculture. Appl Nanosci 4:577–591
Torney, F., Trewyn, B.G., Lin, VS-Y and Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300
Tripathi, S. and Sarkar, S. (2014). Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci. doi:10.1007/s13204-014-0355-9
Wang, A., Zheng, Y. and Peng, F. (2014). Thickness-controllable silica coating of CdTe QDs by reverse Microemulsion method for the application in the growth of rice. J Spectrosc. http://dx.doi.org/10.1155/2014/169245
Wang, X., Han, H., Liu, X., Gu, X., Chen, K. and Lu, D. (2012a). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):1–10
Wang, M., Chen, L., Chen, S. and Ma, Y. (2012b). Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf 79:48–54
Wu, S.G., Huang, L., Head, J., Chen, D.R., Kong, I.C. and Tang, Y.J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126
Xie, Y., Li, B., Zhang, Q. and Zhang, C. (2012). Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatusMcClure. J Nanjing Forest Univ (Natural Science Edition) 2:59–63
Xie, Y., Li, B., Zhang, Q., Zhang, C., Lu, K. and Tao, G. (2011). Effects of nano-TiO2on photosynthetic characteristics of Indocalamus barbatus. J Northeast For Univ 39:22–25
Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C. and Yang, P. (2006). Influence of nano-anatase TiO2on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190
Yin, L., Colman, B.P., McGill, B.M., Wright, J.P. and Bernhardt, E.S. (2012). Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:1–7
Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N.S. and Prabu, P. (2011). Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). Int J Green Nanotechnol 3(3):80–190
Zhao, L., Peralta-Videa, J.R., Rico, C.M., Hernandez-Viezcas, J.A., Sun, Y., Niu, G., Duarte-Gardea, M. and Gardea-Torresdey. J.L. (2014). CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agricul Food Chem 62(13):2752–2759
Zheng, L., Hong, F., Lu, S. and Liu, C. (2005). Effect of nano-TiO2on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91
Zheng, L., Su, M., Liu, C., Chen, L., Huang, H., Wu, X., Liu, X., Yang, F., Gao, F. and Hong, F. (2007). Effects of nanoanatase TiO2on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119(1):68–76.