Tejkaran Patidar*, V. Jamaludheen, K. Surendra Gopal and Lakshmy A.
College of Forestry, KAU, Thrissur-680656 (Kerala), India
Email: teju.patel143@gmail.com
Received-30.06.2017, Revised-14.07.2017
Abstract: A field investigation was carried out with four exotic tree species (Acacia auriculiformis, A. mangium, Casuarina equisetifolia and Swietenia macrophylla) planted at 2m × 2m spacing and of about 30 years age at Kerala Forest Research Institute sub-centre Nilambur. The specific objective of the study was to examine the population variations of beneficial microflora in rhizosphere soil, due to long term occupancy of these trees. The rhizosphere soils were collected for isolation and enumeration of soil microflora like actinomycetes, bacteria, fungi, N-fixing bacteria, P-solubilizer and K-solubilising bacteria population. It was found that, over the years, the tree species influenced the soil microflora. The highest population of fungi, nitrogen fixing bacteria, phosphate solubilizing microorganism and potash solubilizing bacteria was recorded under A. mangium. The highest mean population of actinomycetes and bacteria was associated with C. equisetifolia. These four exotic tree species taken part actively in the improvement of soil quality and soil health which are the major determinants of sustainable soil productivity.
Keywords: Exotic forest tree species, Actinomycetes, Bacteria, Fungi, Beneficial microflora
REFERENCES
Bakarr, M. I. and Janos, D. P. (1996). Mycorrhizal associations of tropical legume trees in Sierra Leone, West Africa. For. Ecol. Manage. 89(1/3): 89-92.
Bowen, G.D. and Rovira, A.D. (1991). The rhizosphere, the hidden half of the hidden half. In: Waisel, Y. and Kafka, U. (ed.), Plant Roots. The Hidden Half Marcel Dekker, New York, pp. 641-649.
Buckley, D.H. and Schmidt, T.M. (2003). Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5: 441-452.
DiCello, F., Bevivino, A., Chiarini, L., Fani, R., Paffetti, D., Tabacchioni, S. and Dalmastri, C. (1997). Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63: 4485-4493.
Dunfield, K.E. and Germida, J.J. (2003). Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl. Environ. Microbiol. 69: 7310-7318.
Elsas, J.D. van, Speksnijder, A.J. and Overbeek, L.S. van (2008). A procedure for the metagenomics exploration of disease-suppressive soils. J. Microbiol. Methods 75: 515-522.
Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M. and Ball, A.S. (2003). Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69: 1800-1809.
Golinska, P. and Dahm, H. (2011). Occurrence of actinomycetes in forest soil. Dendrobiology 66: 3-13.
Gueye, M. and Ndoye, I. (1998). Genetic diversity and nitrogen fixation of acacias. In: Campa, C., Grignon, C., Gueye, M., and Hamon, S. (eds), L’acacia au Sénégal. Actes de la réunion thématique sur l’acacia au Sénégal. Dakar, Sénégal, pp. 351-355, 464-465.
Johnson, L.F. and Curl, E.A. (1972). Isolation of groups of microorganisms from soil. Methods for research on the ecology of soil borne plant pathogens. Burgees Publishing Company, New York, pp 6-13.
LiXia, Z., WeiMin, Y., ZhiGang, Y., ZhiAn, L. and MingMao, D. (2004). Soil microbial characteristics in rehabilitation process of degraded ecosystems in Heshan. J. of Trop. and Subtrop. Bot. 12(3): 202-206.
Marschner, P., Yang, C.H., Lieberei, R. and Crowley, D.E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33: 14371-445.
Rajendran, K. and Devaraj, P. (2004). Biomass and nutrient distribution and their return of Casuarina equisetifolia inoculated with biofertilizers in farm land. Biomass Bioenergy 26: 235-249.
Rao, S.W.V.B. and Sinha, M.K. (1963). Phosphate dissolving organisms in the soil and rhizosphere. Indian J. Agric. Sci. 33: 272-278.
Rodrigues, H.J.B., Sá, L.D. de A., Ruivo, M. de L.P., Costa, A.C.L. da, Silva, R.B. da, Moura, Q.L. de, and Mello, I.F. de (2011). Quantitative microbial population variability associated with the microclimate conditions observed in tropical rainforest soil. Revista Brasileira de Meteorologia 26(4): 629-638.
Sharma, B.K., Sarma, H.K., Shukla, A.K. and Tiwari, S.C. (2009). Impact of seabuckthorn stands on rhizospheric and soil microbial population. Indian J. For. 32(2): 263-268.
Silva, R.G., Jorgensen, E.E., Holub, S.M. and Gonsoulin, M.E. (2005). Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems. Nutr. Cycling Agroecosyst. 71(3): 259-270.
Singh, K.S.D., Arifin, A., Radziah, O., Shamshuddin, J., Hazandy, A.H., Majid, N.M., Aiza-Shaliha, J., Rui, T. X. and Keeren, S. R. (2013). Status of soil microbial population, enzymatic activity and biomass of selected natural, secondary and rehabilitated forests. Am. J. Environ. Sci. 9(4): 301-309.
Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H. and Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742-4751.
Tilki, F. and Fisher, R. F. (1998). Tropical leguminous species for acid soils: studies on plant form and growth in Costa Rica. For. Ecol. Manage. 108: 175-192.
Wieland, G., Neumann, R., and Backhaus, H. (2001). Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67: 5849-5854.