2017, Issue 6, Volume 9

EFFECT OF GLYPHOSATE HERBICIDE ON PHYSIOLOGICAL AND BIOCHEMICAL PARAMETERS OF VIGNA MUNGO L.

Megha Singhal, Ashok Kumar* and Kuldeep Kumar

Department of Botany, CCS University Campus, Meerut

Email: dr.ashokbotany@gmail.com

Received-12.05.2017, Revised-06.06.2017

Abstract: A field experiment was conducted to evaluate the effect of Glyphosate on different physiological and biochemical parameters of Vigna mungo L. The results obtained from this study revealed that the low amount of application of glyphosate (50 ppm and 100 ppm) of glyphosate have stimulatory effect on plant growth but adversely affect the growth parameters at higher concentration (>100 ppm). At higher concentration glyphosate decrease the protein, chlorophyll and leghaemoglobin contents of plants and interrupt the Rhizobium-legume symbiosis. Hence, the present study can conclude that glyphosate in the limited amount (50ppm and 100ppm) can enhance the productivity of plant Vigna mungo L.

Keywords:Glyphosate, Vigna mungo L., Rhizobium, Herbicides, Weed control methods

REFERENCES

Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. plant physiology. 24: 1-15.

Bergersen, F. J., Turner, G. L. (1980). Journal of General Microbiology, 118:235-52.

Breadford, M. M.(1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry: 72:248-254.

Burkitt, D.P., Trowell,H.C.(1985): Refined carbohydrates in foods and disease, some implications of dietary fiber. Academic Press New York.

Cakmak, I., Yazici, A., Tutus, Y., Ozturk, L. (2009) Glyphosate reduced seed and leaf concentrations of calcium, magnesium, manganese, and iron in non-glyphosate resistant soybean. Eur J Agron: 31:114–119

Cavusoglu, K., Yapar, K., Oruc, E., Yalcin, E. (2011). Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice. J Med Food: 14: 1263-1272.

Coruzzi G., Last, R.L. (2000). Amino acids. In: Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists; pp. 358–401.

Cox, C.(1998). Glyphosate (Roundup). J. Pest. Reform.

Deepalakshmi, A.J., Anandakumar, C.R. (2004). Creation of genetic variability for different polygenic traits in blackgram (Vigna  mungo L. Hepper) through induced mutagenesis. Legume Res ;27: 188-192.

Eberbach, P. (1998). Applying non-steady-state compartmental analysis to investigate the simultaneous degradation of soluble and sorbed glyphosate (N-(phosphonométhyl)glycine) in four soils. Pesticide Sci., 52: 229-240

Eberbach, P.L., Douglas, L.A. (1983) Persistence of glyphosate in a sandy loam soil, Soil Biol. Biochem.; 15: 485–487.

Erdman, J. W. and  Fordyce, E. J. (1989) Soy products and the human diet. Am. J. Clin. Nutr. 49: 725-737.

Haney, R.L., Senseman, S.A., Hons, F.M. and Zuberer, D.A. (2000). chemicals in soil. Effect of Roundup on soil microbial activity and biomass. Weed Sci.; 9: 48:89

Herridge, D.F. (1982). Relative abundance of ureides and nitrate in plant tissues of soybean as a quantitative assay of nitrogen fixation. Plant Physiology; 70: 1-6.

Huang, J. (2012). Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physicochemical properties of cogongrass (Imperata cylindrical L.). Plant Omics Journal     5: 177– 183.

Karamany, M.F.E.L. (2006). Double purpose (forage and seed) of mungbean production 1-effect of plant density and forage cutting date on forage and seed yields of mungbean (Vigna radiata (L.) Wilczeck). Res J Agri Biol Sci ;2: 162–165.

Maria, D., Becerril, N., Garcia-Plazaola, J.I., Hernandez, A.,  Felipe, M.R., Fernandez-Pascual, M.( 2006). New insights on glyphosate mode of action in nodular metabolism: role of shikimate accumulation. J. Agric. Food Chem. 54: 2621–2628.

Pynenburg, G. M. (2011) The interaction of annual weed and white mold management systems for dry bean production in Canada.  Can. J. Plant Sci.; 91(3): 587-598.

Rennie, R.J.; Dubetz, S. (1984). Effect of fungicides and herbicides on nodulation and N2 fixation in soybean fields lacking indigenous Rhizobium japonicum. Agronomy Journal; 76: 451-454.

Shaban, S.A., EI-Hattab, A.H .. Hassan, E.H. and Abo-EI Suoud, M.R. (1987). Recovery of faba bean (vicia faba I.) plants as affected by glyphosate. J. Agron. and Crop Sci.;158: 294-303.

Snell, F.D . and Snell ,C.T.(1967). Colorimetric method of analysis including photometric methods. Van Nostrand, Inc; Princerton, New Jersey. 4: 217-23.

Stanley P. and Burg ,S. P.(1973). Ethylene in Plant Growth. Proceed. Nati. Acad. Sci., 70(2): 591–597

Tu, C.M. (1994). Effects of herbicides and fumigants on microbial activities in soil. Bulletin of Environmental Contamination and Toxicology; 53:12-17

Vaughn, K.C. and Fuerst, E.P (1985). Structural and physiological studies of paraquat resistant Conyza. Pestic. Biochem. Physiol.; 24 : 86-94

Wauchope, R.D. Buttler ,T.M. Hornsby, A.G., Augustijn-Beckers P.W.M., and Burt J.P. (1992). Pesticide Information Profiles.  Extension Toxicology Network.

WSSA. (1994).Glyphosate In: Herbicide handbook. Weed science society of America, Champaign.7th edition, pp-149-152.

Wyszkowska, J. and Kucharski. J. (2004). Biochemical and Physicochemical Properties of Soil Contaminated with Herbicide Triflurotox 250 EC. Polish J.Envir. Studies; 13(2): 223-231.

Zaidi,A , Khan, S., Rizvi, P. Q.( 2005). Effect of herbicides on growth, nodulation and nitrogen content of greengram. Agronomy for Sustainable Development, Springer; 25 (4):497-504.

Zobiole, L. H. S., Kremer, R. J., Oliveira, R. S. and Constantin, J. (2012). Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. J. Plant Nutr. Soil Sci.175:319–330.