2017, Issue 6, Volume 9

DEVELOPMENT OF SUGARCANE PLASTID TRANSFORMATION SYSTEM USING PARTICLE BOMBARDMENT

Ravindra R. Kale1,2*, Pallavi Wadyalkar1,3, Prashant G. Kawar1,4, V.S. Ghole1,5
and K. Harinath Babu1*

1Vasantdada Sugar Institute, Manjari (Bk), Pune – 412307, Maharashtra, India

2Institute of Biotechnology, PJTSAU, Rajendranagar, Hyderabad, Telangana, India

3B1-402, Tirupathi Campus, Phase-2, Rd No.2, Tingrenagar, Vishrantiwadi, Pune-411015

4ICAR-DOFR, College of Agriculture Campus, Shivajinagar, Pune 411005 Maharahstra, India

5National Institute of Virology, Pashan, Pune, Maharashtra, India

Email: khbabu_63@yahoo.com

Received-30.03.2017, Revised-01.05.2017

Abstract: Chloroplast transformation has number of advantages over nuclear transformation like high-level of transgene expression, transgene containment and lack of gene silencing. The present work carried out to develop a chloroplast transformation protocol for sugarcane. Embryogenic calli of sugarcane variety Co86032 used as target tissue for transformation. Chloroplast specific transformation vector pZE39 having NPTII and GFP genes flaked by trnG and pzbZ of chloroplast sequence used for transformation. Selection of transformants were carried out at callus, shoot and rooting stages with Geneticin ranging from 25 to 75 mg/l during different selection cycles. Most of the regenerated shoots turned albino during selection. Among different bombardment parameters tested, rupture discs pressure at 1350 psi, distance between target tissue and stopping screen at 8 cm and expose of target tissue to light for 8 days before bombardment found prominent in producing more number of green and resistant plants on selection medium. Molecular analysis revealed that out of 146 plants tested, 44 plants are found PCR positive. Four of eleven PCR poitive plants showed positive by Southern hybridization and five of ten plants are showed positive signals for GFP. This is the first report on an attempt to develop a chloroplast transformation protocol for sugarcane.

Keywords: Chloroplast transformation, Co86032, NPTII, GFP, Particle bombardment

RERFERENCES

Aljanabi, S.M., Forget, L. and Dookun, A. (1999). An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Molecular Biology Reports,17 : 1-8.

Arencibia, A., Carmon, E., Tellez, P., Chan, M. T., Yu, S.M., Trujillo, L.  and Oramas, P. (1998). An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by Agrobacterium tumefaciens. Transgenic research, 7 : 213-222.

Arvinth, S., Arun, S., Slevakesavan, R.K., Srikanth, J., Mukunthan, N., Kumar, P.A. (2010). Premachandran M N and  Subramonian N, Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance, Plant Cell Reports, 29 : 383-395.

Aziz, A.M., Sikriwal, D., Singh, S., Jarugula, S., Kumar, P.A. and Bhatnagar, R. (2005). Trasnformation of an edible crop with the pagA gene of Bacillus anthracis, The FASEB Journal, 19 : 1501-1503.

Bock, R. (2014) . Genetic engineering of the chloroplast: novel tools and new applications, Current Opinion in Biotechnology, 26 : 7-13.

Bower, R. and Birch, R.G. (1992). Transgenic sugarcane plants via microprojectile bombardment, Plant Journal, 2 : 409-416.

Chen, W.H., Gartland, K.M.A., Davey, M.R., Sotak, R., Gartland, J.S., Mulligan, B.J., Power, J.B. and Cocking, E.C. (1987). Transformation of sugarcane protoplasts by direct uptake of a selectable chimeric gene, Plant Cell Reports, 6 : 297-301.

Christy, L.A., Arvinth, S., Saravanakumar, M., Kanchana, M., Mukunthan, N., Srikanth, J., Thomas, G., Subramonian, N. (2009). Engineering sugarcane cultivars with bovine pancreatic Trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis  Walker), Plant Cell Reports, 28 : 175-184.

Cosa, B.D., Moar, W., Lee, S., Miller, M. and Daniell, H. (2001). Overexpression of the Bt cry2Aa2 operon in chloroplast leads to formation of insecticidal crystals, Nature Biotechnology, 19 : 71-74.

Dufourmantel, N., Pelissier, B., Garcon, F., Peltier, G., Ferullo, J.M. and Tissot, G. (2004). Generation of fertile transplastomic soybean, Plant Molecular Biology, 55 : 479-489.

Franks, T. and Birch, R.G. (1991). Gene transfer into intact sugarcane cells using microprojetile bombardment, Australian Journal of Plant Physiol, 18 : 471-480.

Gisby, M.F., Mellors, P., Madesis, P., Ellin, M., Laverty, H., O’kane, S., Ferguson, M.W.J. and Day, A. (2011). A synthetic gene increases TGFβ3 accumulation by 75-fold in tobacco chloroplast enabling rapid purification and folding into a biologically active molecule, Plant Biotechnology Journal, 9 : 618-628.

Kalunke, R.M., Kolge, A.M., Babu, K.H. and Prasad, D.T. (2009). Agrobacterium mediated transformation of sugarcane for borer resistance using cry 1Aa3 gene and one-step regeneration of transgenic plants, Sugar Tech, 11 : 355-359.

Khan, M.S. and Maliga, P. (1999). Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants, Nature Biotechnlogy, 17 : 910-915.

Kumar, S., Dhingra, A. and Daniell, H. (2004). Stable transformation of the cotton plastid genome and maternal inheritance of transgenes, Plant Molecular biology, 56 : 203-216.

Langbecker, C.L., Ye, G., Broyles, D.L., Duggan, L.L., Xu, C.W., Hajdukiewicz, P.T.J., Armstrong, C.L. and Staub, J.M. (2004). High-Frequency Transformation of Undeveloped Plastids in Tobacco Suspension Cells, Plant Physiology, 135 : 39-46.

Lee, S.M., Kang, K., Chung, H., Yoo, S.H., Xu, X.M., Lee, S.B., Cheong, J.J., Daniell, H. and Kim, M. (2006). Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Orzya sativa) and Transmission of Transgenes to their progeny, Molecular Cells, 21(3) :401-410.

Lentz, E.M., Garaicoechea, L., Alfano, E.F., Parreno, V., Wigdorovitz, A. and Bravo-Almonacid, E.F. (2012). Translation fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco, Planta, 236 : 703-714.

Leu, L.S. (1972). Freeing Sugarcane from mosaic virus by apical meristem culture and tissue culture, Report of Tiwan Sugar Experimental Station, 57 : 57-63.

Lima, M.L., Garcia, A.A., Oliveria, K.M., Matsuoka, S., Arizono, H., Jr deSouza, C.L. and De Souza, A.P. (2002). Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugarcane (Saccharum spp.), Theorotical and Applied Genetics, 104 : 30-38.

Liu, C.W., Lin, C.C., Chen, J.J. and Tseng, M.J. (2007). Stable chloroplast transformation in cabbage (Brassica oleracea L.var. capitata L.) by particle bombardment, Plant Cell Reports, 26 : 1733-1744.

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiologia Plantarum, 15 : 473- 497.

Nickell, L.G. (1967). Tissue and cell culture for sugarcane research, Proc.ISSCT 12 : 887-892.

Nutt, K.A., Allsopp, P.G., Mcghie, T.K., Shepherd, K.M., Joyce, P.A., Taylor, G.O., Mcqualter, R.B. and Smith, G.R. (1999). Transgenic Sugarcane with increased resistance to canegrubs, Proceedings of Australian Society of  Sugar Cane Technology, 21 : 171-176.

Oey, M., Lohse, M., Scharff, L.B., Kreikemeyer, B. and Bock, R. (2009). Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins, Proceedings of National Academy of Science USA, 106 : 6579-6584.

Rani, K., Sandhu, S.K. and Gosal, S.S. (2012). Genetic augmentation of sugarcane through direct gene transformation with Osgly II gene constructs. Sugar Tech 14 : 229-236.

Rathus, C. and Birch, R.G. (1999). Stable transformation of callus from electroporated sugarcane protoplasts, Plant Science, 82 : 81-89.

Ruf, S., Karcher, D. and Bock, R. (2007). Determining the transgene containment level provided by chloroplast transformation, PNAS, 104 (17) : 6998-7002.

Sidorov, V.A., Kasten, D., Pang, S.Z., Hajdukiewicz, P.T.J., Staub, J.M. and Nehra, N.S. (1999). Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid as a plastid marker, Plant Journal, 19 : 209-216.

Singh, A.K., Verma, S.S. and Bansal, K.C. (2010). Plastid ttrasnformation in egg plant (Solanium melongena L.), Trasngenic Research, 19 : 113-119.

Skarjinskaia, M., Svab, Z. and Maliga, P. (2003). Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea, Transgenic Research, 12 : 115-122.

Verma, D. and Daniell, H. (2007). Chloroplast vector systems for biotechnology applications, Plant Physiology, 145 : 1129-1143.

Verma, D., Moghimi, B., LoDuca, P.A., Singh, H.D., Hoffman, B.E., Herzog, R.W. and Daniell, H. (2010). Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice, Proceedings of National Academy of Science USA, 107 : 7101- 7106.

Wadyalkar, P., Dhamangaonkar, S., Snehal, N., Nerkar, G.,  Kawnar, P., Devarumath, R.M., Ghole, V.S. and Babu, K.H. (2011). Improved protocols for embryogenic callus induction and direct regeneration of sugarcane (Saccharum officinarum L.) cv. Co 86032, in Proceedings of 4th International Sugar Conference and Expo,780-784.

Wani, S.H., Haider, N., Kumar, H. and Singh, N.B. (2010). Plant Plastid Engineering, Current Genomics, 11 : 500-512.

Wei, Z., Liu, Y., Lin, C., Wang, Y., Cai, Q., Dong, Y. and Xing, S. (2011). Transformation of alfalfa chloroplast and expression of green fluorescent protein in a forage crop, Biotechnology Letters,1-8.

Wu, L. and Birch, R. (2007). Doubled sugar contains in sugarcane plants modified to produce a sucrose isomer, Plant Biotechnology Journal, 5 : 109-117.

Wurbs, D., Ruf, S. and Bock, R. (2007). Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome, The Plant Journal, 49 : 276-28.