2017, Issue 3, Volume 9

SCREENING OF NATIVE BACILLUS THURINGIENSIS (BT) ISOLATES FOR THE PRESENCE OF CRY 1 AB & VIP 3A

Sunita Kumari Meena*, Sarvjeet Kaur and B.L. Meena

ICAR – National Research Centre on Plant Biotechnology,

IARI  Campus, New Delhi  110012, India.

Email:Sunita kumari meena (email:meenasb_bt08@yahoo.com)

Received-03.03.2017, Revised-15.03.2017

Abstract: Insecticidal cry and vip genes from Bacillus thuringiensis (Bt) have been used for control of lepidopteran insects in transgenic crops. However, novel genes are required for gene pyramiding to delay evolution of resistance to the currently deployed genes.PCR-based techniques were employed for screening of cry1Ab type genes in 96 Bt isolates from diverse habitats in India and 8 known Bt strains. 96 native Bt isolates, recovered from  different locations in  India and  8 known Bt strains were  screened for  the  presence of cry 1 Ab, cry 1Ac, Cry 3A & vip 3A for Isolation of plasmid DNA from native Bt isolates of Bacillus thuringiensis, Screening for the presence of cry 1 Ab, cry 1Ac, cry 3A & vip 3A gene using PCR amplification and Cloning of partial cry 1 Ab & vip 3A gene using different sets  of primers. Cry1Ab type genes were more prevalent than cry1Aa– and cry1Ac type genes. Correlation between source of isolates and abundance of cry1-type genes was not observed..

Keywords: Bacillus thuringiensis, Cry1Ab genes, Cry1Ac, Cry3A, Vip3A, Helicoverpa armigera, Insecticidal genes

REFERENCES

Adang, M.J., Crickmore, N. and Jurat-Fuentes, J.L. (2014). Diversiry  of Bacillus thuringiensis crystal toxins and  mechanism of action. In Advances in  insect physiology. Vol. 47. Edited by T.S. Dhadialla and S.S. Gill. Academic Press, Oxford.  pp. 39 –87.

Akhurst, R.J., James, W., Bird, L.J. and Beard, C. (2003). Resistance to the Cry1Ac  –  endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ.   Entomol.  96:   1290 –1299.

Beard, C.E., Court, L., Mourant, R.G., James, B., Van Rie,  J., Masson,  L. and Akhurst, R.J. (2008). Use of a Cry1Ac-resistant line  of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel   insecticidal toxin genes   in  Bacillus thuringiensis. Curr. Microbiol. 57:175 –180.

Carozzi, N.B., Kramer, V.C., Warren, G.W., Evola, S. and Koziel, M.G. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by  polymerase chain reaction product profiles.  Appl.  Environ.  Microbiol.  57:  3057–3061.

Carriere,  Y., Crickmore, N. and Tabashnik, B.E. (2015). Optimiz- ing pyramided transgenic Bt crops  for sustainable pest  man- agement.  Nat. Biotechnol. 33: 161–168.

Fabrick,  J.A., Ponnuraj,  J., Singh,   A.,  Tanwar,  R.K.,  Unnithan, G.C., Yelich, A.J. et al. (2014). Alternative splicing and    highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in In- dia.  PLoS  ONE, 9: e97900.

Gouffon, C.,  Van  Vliet,  A., Van  Rie,  J., Jansens, S. and Jurat-Fuentes, J.L. (2011). Binding sites  for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are  not  shared with Cry1A, Cry1F, or Vip3A  Toxin.  Appl. En- viron.    Microbiol.  77:  3182–3188.

Ibargutxi, M., Muñoz, D., Escudero, I.R. and Caballero, P. (2008). Interactions between Cry1Ac, Cry2Ab,  and   Cry1Fa Bacillus thuringiensis toxins in  the  cotton pests  Helicoverpa armigera (Hübner) and   Earias insulana (Boisduval).  Biol. Control, 47: 89-96

James, C. (2013). Global  status of  commercialized  biotech/GM crops:  2013. ISAAA Brief No. 46. International Service for the Acquisition of Agri-biotech Applications, Ithaca, New York.

Jurat-Fuentes, J.L., Gould, F.L. and Adang, M.J. (2003). Dual resis- tance to  Bacillus thuringiensis Cry1Ac and  Cry2Aa  toxins in Heliothis  virescens suggests multiple  mechanisms  of  resis- tance.  Appl. Environ. Microbiol. 69: 5898 – 5906.

Katara,  J.L., Deshmukh, R.,  Singh,  N.K. and Kaur,  S.  (2012). Molecular typing of native Bacillus thuringiensis isolates from diverse habitats in India  using REP-PCR and  ERIC-PCR analy- sis. J. Gen. Appl. Microbiol. 58: 83–94.

Kaur,   S. (2000).  Molecular approaches towards development of novel   Bacillus thurigiensis biopesticides. World J. Microbiol. Biotechnol. 16: 781–793.

Kaur, S. (2006). Molecular approaches for identification and con- struction of  novel   insecticidal genes   for  crop   protection. World J. Microbiol. Biotechnol. 22:  233–253.

Kaur, S. (2012). Risk assessment of Bt transgenic crops.  In Bacillus thuringiensis biotechnology. Edited by E. Sansinenea. Dor- drecht, the  Netherlands.  Springer Publishers, Heidelberg. pp.41-86.  

Kaur,  S. and  Allam,  U.S. (2006).  PCR-based  cloning of a novel cry1Ac gene from  a Bacillus thuringiensis isolate recovered from stored cottonseeds. Biopestic. Int. 2: 120 –128.

Kaur,  S. and  Singh,   A. (2000).  Natural occurrence of  Bacillus thuringiensis in  leguminous phylloplanes in  the  New  Delhi region of India.  World J. Microbiol. Biotechnol. 16: 679 – 682.

Koziel,  M.G., Beland,   G.L., Bowman, C.,  Carozzi,  N .B., Crenshaw, R., Crossland, L. et al. (1993). Field performance of elite   transgenic maize plants expressing an insecticidal pro- tein  derived from  Bacillus thuringiensis. Biotechnology (NY), 11:194 –200.

Li, H. and  Bouwer, G. (2014). Evaluation of the  synergistic activ-ities  of Bacillus thuringiensis Cry proteins against Helicoverpa armigera (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 121:7–13.

Liao, C., Heckel, D.G. and  Akhurst, R. (2002). Toxicity  of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of  cotton. J. Invertebr. Pathol. 80:   55 – 63.

Lin, Y., Fang, G. and Cai, F. (2008). The insecticidal crystal protein Cry2Ab10 from  Bacillus thuringiensis: cloning, expression and structure  simulation. Biotechnol. Lett.  30:  513– 519.

Misra,  H.S., Khairnar, N.P., Mathur, M., Vijayalakshmi, N., Hire,  R.S., Dongre, T.K. and Mahajan, S.K. (2002). Cloning and characterization of an insecticidal crystal protein gene  from Bacillus  thuringiensis subspecies  kenyae.  J. Genet.  81: 5 –11.

Pardo-López, L., Soberón, M. and  Bravo,  A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and  consequences for crop  protec- tion.   FEMS Microbiol. Rev. 37:  3–22.

Porcar, M. and  Juarez-Perez, V.M. (2003).  PCR-based  identifica- tion   of  Bacillus thuringiensis pesticidal  crystal genes.   FEMS Microbiol. Rev. 26:  419 – 432. 

Sauka, D.H., Cozzi, J.G. and Benintende, G.B. (2005). Screening of cry2 genes  in Bacillus thuringiensis isolates from  Argentina. An- tonie Van Leeuwenhoek, 88: 163–165.

Schnepf, E., Crickmore, N., Van Rie, J., Lereclus,  D., Baum,  J., Feitelson, J., Zeigler,  D.R. and  Dean,  D.H. (1998). Bacillus thuringiensis and   its  pesticidal  crystal  proteins.  Microbiol. Mol. Biol. Rev. 62: 775 – 806.

Shu, C., Zhang, J., Chen, G., Liang, G., He, K., Crickmore, N. et al. (2013). Use of a pooled clone  method to isolate a novel  Bacillus thuringiensis Cry2A toxin with activity against Ostrinia furnacalis. J. Invertebr. Pathol. 114: 31–33.

Somwatcharajit, R., Tiantad, I. and Panbangred, W. (2014). Coex- pression of the  silent cry2Ab27 together with cry1 genes  in Bacillus thuringiensis subsp. aizawai SP41 leads  to formation of amorphous  crystal  toxin  and   enhanced  toxicity against Helicoverpa armigera. J. Invertebr. Pathol. 116: 48–55.

Subramanian, S. and Mohunkumar, S. (2006). Genetic variability of the  bollworm, Helicoverpa armigera, occurring on different host  plants. J. Insect. Sci. 6: 26 –28.

Tabashnik, B.E., Fabrick, J.A., Unnithan, G.C., Yelich,  A.J., Masson,  L., Zhang, J. et al. (2013). Efficacy of genetically mod- ified  Bt toxins alone and  in combinations against pink boll worm resistant to Cry1Ac and  Cry2Ab. PLoS ONE, 8: e80496.

Van Frankenhuyzen, K. (2013). Cross order and  cross-phylum ac- tivity  of Bacillus thuringiensis pesticidal proteins. J.