2013, Issue 3, Volume 5

INDUSTRIAL AND BIOTECHNOLOGICAL POTENTIAL OF MICROBIAL CELLULASES

Lebin Thomas, Hari Ram, Alok Kumar and Ved Pal Singh

Applied Microbiology and Biotechnology Laboratory Department of Botany, University of Delhi, Delhi-110 007, India Corresponding author’s e-mail: vpsingh_biology@rediffmail.com

Abstract: Biodegradation of plant cellulose is achieved through a concerted action of a group of enzymes of the cellulase system,  synthesized  by a diverse  range  of organisms.  This  biodegradation  holds  importance  not  only in the  efficient recycling of cellulosic biomass within the biosphere, but also in a vast variety of industrial and biotechnological applications. In industrial and research arena, there is an increased interest in utilizing cellulases for lignocellulosic biomass conversion for the production of biobased products and bioenergy. This article presents an overview of cellulase producing microorganisms, along with the important applications of cellulases in the bioconversion of lignocellulosic biomass and in several industries like food, animal feed, brewery, wine, textile, laundry, paper and pulp.

Keywords: Cellulase system, Cellulosome, Industrial applications, Lignocellulose bioconversion

REFERENCES

Acharya,   A.;   Joshi,   D.R.;   Shrestha,   K.   and Bhatta, D.R. (2012). Isolation and screening of thermophilic   cellulolytic   bacteria   from   compost piles. Scientific World, 10(10): 43-46.

Akhtar, N.; Sharma, A.; Deka, D.; Jawed, M.; Goyal, D. and Goyal, A. (2012). Characterization of cellulase producing Bacillus sp. for effective degradation of leaf litter biomass. Environmental Progress      and       Sustainable       Energy,       doi:

10.1002/ep.11726.

Alurralde, J.L. and Ellenrieder, G. (1984). Effect of attached carbohydrates on the activity of Trichoderma  viride  cellulases.  Enzyme  and Microbial Technology, 6: 467-470.

Anderson, K.L. and Blair, B.G. (1996). Regulation of the cellulolytic activity of Eubacterium cellulosolvens    5494:    a    review.    SAAS Bulletin, Biochemistry and Biotechnology, 9: 57-62.

Ariffin, H.; Abdullah, N.; Umi Kalsom, M.S.; Shirai, Y. and Hassan, M.A. (2006). Production and characterization  of  cellulase  by  Bacillus  pumilus EB3. International Journal of Engineering and Technology, 3(1): 47-53.

Aurilia,  V.;  Martin,  J.C.;  McCrae,  S.I.;  Scot, K.P.; Rincon, M.T. and Flint, H.J. (2000). Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus   flavefaciens17   that   carry divergent  dockerin  sequences.  Microbiology,  146:

1391-1397.

Bai, S.; Kumar, M.R.; Kumar, D.J.M.; Balashanmugam, P.; Balakumaran, M.D. and Kalaichelvan, P.T. (2012). Cellulase production by Bacillus subtilis isolated from cow dung. Archives of Applied Science Research, 4(1): 269-279.

Barabote, R.D.; Xie, G.; Leu, D.H.; Normand, P.; Necsulea, A.; Daubin, V.; Me´digue, C.; Adney, W.S.;  Xu,   X.C.;   Lapidus,   A.;   Parales,   R.E.; Detter,  C.;  Pujic,  P.;  Bruce,  D.;  Lavire,  C.; Challacombe, J.F.; Brettin, T.S. and Berry, A.M. (2009). Complete genome of the cellulolytic thermophile  Acidothermus  cellulolyticus  11B provides insights into its ecophysiological and evolutionary adaptations.  Genome Research, 19(6):

1033-1043.

Bauchop,  T.  (1979).  Rumen  anaerobic  fungi  of cattle and sheep. Applied and Environmental Microbiology, 38: 148-158.

Béguin, P. and Aubert, J.P. (1994). The biological degradation  of  cellulose.  FEMS  Microbiology Reviews, 13(1): 25-58.

Bélaich, J.P.; Tardif, C.; Bélaich, A. and Gaudin, C.  (1997).  The  cellulolytic  system  of Clostridium cellulolyticum. Journal of Biotechnology, 57: 3-14. Beldman,    G.;    Searle-Van    Leeuwen,    M.F.; Rombouts, F.M. and Voragen, F.G.J. (1985). The cellulase    of    Trichoderma    viride:    Purification, characterization  and  comparison  of  all  detectable endoglucanases,  exoglucanases  and  β-glucosidases. European Journal of Biochemistry, 146: 301-308. Benesova,  E.;  Markova,  M.  and  Kralova,  B. (2005).   α-Glucosidase   and   β-glucosidase   from psychrotrophic strain Arthrobacter sp. C2-2. Czech Journal of Food Sciences, 23: 116-120.

Berger, E.; Jones, W.A.; Jones, D.T. and Woods, D.R.   (1990).   Sequencing   and   expression   of   a cellodextrinase     (ced1)     gene     from Butyrivibrio fibrisolvens H17c     cloned     in Escherichia     coli. Molecular Genetics and Genomics, 223: 310-318. Bhat,    K.M.    and    Maheshwari,    R.    (1987). Sporotrichum     thermophile:     Growth,     cellulose degradation   and   cellulase   activity.   Applied   and Environmental Microbiology, 53: 2175-2182.

Bhat, M.K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18: 355-

383.

Bhat,   M.K.   and   Bhat,   S.   (1997).   Cellulose degrading  enzymes  and  their  potential  industrial applications. Biotechnology Advances, 15: 583-620. Borneman, W.S.; Hartley, R.D.; Morrison, W.H.; Akin,  D.E.  and  Ljundahl,  L.G.  (1990).  Feruloyl and  p-coumaroyl  esterase  from  anaerobic  fungi  in relation   to  plant   cell  wall   degradation.   Applied Microbiology and Biotechnology, 33: 345-351.

Boyer, M.H.; Chambost, J.P.; Magnan, M. and Cattanéo, J. (1984). Carboxymethyl-cellulase from Erwinia chrysanthemi. I. Production and regulation of extracellular carboxymethyl-cellulase. Journal of Biotechnology, 1: 229-239.

Caldini, C.; Bonomi, F.; Pifferi, P.G.; Lanzarini, G. and Galante, Y.M. (1994). Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine. Enzyme and Microbial Technology, 16: 286-291.

Chan,  K.Y.  and  Au,  K.S.  (1987).  Studies  on cellulase production by a Bacillus subtilis. Antonie van Leeuwenhoek, 53: 125-136.

Cheng, C.L. and Chang, J.S. (2011). Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresource Technology, 102: 8628-8634.

Coughlan, M.P. (1985). Cellulases: Production, properties and applications. Biochemical Society Transactions, 13: 405-406.

Cowan, W.D. (1996). Animal feed. In: Godfrey, T.

and  West,  S.  (ed.)  Industrial  Enzymology,   2nd edition, Macmillan Press, London, pp: 360-371. Cristobal,  H.A.;  Breccia,  J.D.  and  Abate,  C.M. (2008). Isolation  and molecular  characterization  of Shewanella sp. G5, a producer of cold-active beta-D- glucosidases. The Journal of Basic Microbiology, 48:

16-24.

Ding, S.Y.; Bayer, E.A.; Steiner, D.; Shoham, Y. and Lamed, R. (1999). A novel cellulosomal scaffoldin       from Acetovibrio       cellulolyticus that contains a family 9 glycosyl hydrolase. Journal of Bacteriology, 181: 6720-6729.

Edler,  D.J. and Kelly,  D.J. (1994). The bacterial degradation of benzoic acid and benzoid compounds under anaerobic conditions: unifying trends and new perspectives. FEMS Microbiology Reviews, 13: 441-

468.

Ekperigin, M.M. (2007). Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. African Journal of Biotechnology,

6(1): 28-33.

Eriksson,  K.E.  (1978).  Enzyme  mechanisms involved in  cellulose  hydrolysis  by the rot  fungus Sporotrichum pulverulentum. Biotechnology and Bioengineering, 70: 317-332.

Fan,   L.T.;  Lee,  Y.H.   and  Gharpuary,   M.M. (1982). The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical  Engineering/Biotechnology,   23:  157-

187.

Farkas, V.; Kolarova, N. and Labudovfi, I. (1987). Complexation   with   carrier   ampholytes   as   the possible   source   of   artifacts   during   isoelectric focusing of cellulase. Biologia (Bratislava), 42: 327-

333.

Ferreira, L.M.A.; Hazlewood, G.P.; Barker, P.J. and Gilbert, H.J. (1991). The cellodextrinase from Pseudomonas  fluorescens  subsp.  cellulosa  consists of multiple functional domains. The Biochemistry Journal, 279: 793-799.

Fu,  X.;  Liu,  P.;  Lin,  L.; Hong, Y.;  Huang,  X.; Meng,  X.  and  Liu,  Z.  (2010).  A  novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus   sp.   BME-14.   Applied Biochemistry and Biotechnology, 160: 1627-1636.

Galante, Y.M.; De Conti, A. and Monteverdi, R. (1998a). Application of Trichoderma enzymes in textile industry. In: Harman, G.F. and Kubicek, C.P. (ed.) Trichoderma & Gliocladium– Enzymes, biological   control   and   commercial   applications, Taylor & Francis, London, 2: 311-326.

Galante, Y.M.; De Conti, A. and Monteverdi, R. (1998b). Application of Trichoderma enzymes in textile industry. In: Harman, G.F. and Kubicek, C.P. (ed.) Trichoderma & Gliocladium– Enzymes, biological   control   and   commercial   applications, Taylor & Francis, London, 2: 327-342.

Gilkes, N.R.; Kilburn, D.G.; Miller, R.C., Jr. and Warren, R.A.J. (1991). Bacterial cellulases. Bioresource Technology, 36: 21-35.

Godfrey, T.  (1996). Textiles.  In: Godfrey, T. and West, S. (ed.) Industrial enzymology, 2nd edition, Macmillan Press, London, pp: 360-371.

Goyal, A.; Ghosh, B. and Eveleigh, D. (1991). Characteristics of fungal cellulases. Bioresource Technology, 36: 37-50.

Gum,    E.K.    and   Brown,    R.D.,    Jr.    (1977). Comparison  of four  purified extracellular  1,4-β-D- glucan  cellobiohydrolase  from  Trichoderma viride. Biochimica et Biophysica Acta, 492: 225-231. Gunata, Y.Z.; Bayonove, C.L.; Cordonnier, R.E.; Arnaud,  A.  and Galzy,  P.  (1990).  Hydrolysis  of grape    monoterpenyl     glycosides     by     Candida molischiana     and     Candida     wickerhamii      β- glucosidases.  Journal  of  the  Science  of  Food  and Agriculture, 50: 499-506.

Gupta, P.; Samant, K. and Sahu, A. (2012). Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International     Journal     of     Microbiology,     doi:

10.1155/2012/578925.

Hagerdal, B.; Ferchak, J.D. and Kendall Pye, E. (1980).  Saccharification  of  cellulose  by  the cellulolytic enzyme system of Thermomonospora sp. I. Stability of cellulolytic activities with respect to time, temperature and pH. Biotechnology and Bioengineering, 22: 1515-1526.

Hayashi, K.; Nimura, Y.; Ohara, N.; Uchimura, T.; Suzuki, H.; Komagata, K. and Kozaki, M. (1996).  Low-temperature  active  cellulase  produced by Acremonium alcalophilum JCM 7366. Seibutsu- kogaku Kaishi, 74: 7-10.

Hazlewood,    G.P.; Laurie,    J.I.; Ferreira,    L.M. and Gilbert, H.J. (1992). Pseudomonas fluorescens subsp. cellulosa: an alternative model for  bacterial cellulase.   Journal of Applied   Bacteriology,   72(3):

244-251.

Hesselman, K.; Elwinger, K. and Thomke, S. (1982). Influence of increasing levels of β-glucanase on  the productive value of barley diets for  broiler chickens. Animal Feed Science and Technology, 7:

351-358.

Hodrova, B.; Kopecny, J. and Kas, J. (1998). Cellulolytic enzymes of rumen anaerobic fungi Orpinomyces joyonii and Caecomyces communis. Research in Microbiology, 149: 417-427.

Hogsett, D.A.; Ahn, H.J.; Bernardez, T.D.; South, C.R. and Lynd, L.R. (1992). Direct microbial conversion- Prospects, progress, and obstacles. Applied Biochemistry  and Biotechnology,  34:  527-

541.

Huang, L. and Forsberg, C.W. (1987). Isolation of a cellodextrinase from Bacteroides succinogenes. Applied and Environmental Microbiology, 53: 1034-

1041.

Ibrahim, A.S.S. and El-diwany, A.I. (2007). Isolation and identification of new cellulases producing  thermophilic  bacteria  from  an  Egyptian hot spring and some properties of the crude enzyme. Australian Journal of Basic and Applied Sciences, 1:

473-478.

Irfan, M.; Safdar, A.; Syed, Q. and Nadeem, M. (2012).   Isolation   and   screening   of   cellulolytic bacteria from soil and optimization of cellulase production and activity. Turkish Journal of Biochemistry, 37(3): 287-293.

Jayashree,  S.;  Lalitha,  R.;  Vadivukkarasi,  P.; Kato,   Y.   and   Seshadri,   S.   (2011).   Cellulase production      by     pink     pigmented     facultative methylotrophic       strains       (PPFMs).       Applied Biochemistry and Biotechnology, 164(5): 666-680. Kakiuchi,  M.;  Isui,  A.;  Suzuki,  K.;  Fujino,  T.; Fujino, E.; Kimura, T.; Karita, S.; Sakka, K. and Ohmiya, K. (1998). Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their  gene  products  as  major  components  of  the cellulosome.  Journal  of  Bacteriology,  180:  4303-

4308.

Kasana,  R.C.  and  Gulati,  A.  (2011).  Cellulases from psychrophilic microorganisms:  a review. Journal of Basic Microbiology, 51: 572-579.

Kasana, R.C.; Salwan, R.; Dhar, H.; Dutt, S. and Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57: 503-507. Khan,   J.A.;   Ranjan,   R.K.;   Rathod,   V.   and Gautam,  P.  (2011).  Deciphering  cow  dung  for cellulase  producing  bacteria.  European  Journal  of Experimental Biology, 1(1): 139-147.

Khandke,  K.M.;  Vithayathil,  P.J.  and  Murthy, K.S. (1989). Purification of xylanase, β-glucosidase, endocellulase and exocellulase from thermophilic fungus, Thermoascus aurantiacus. Archives of Biochemistry and Biophysics, 274: 491-500.

Kim, C.H. and Kim, D.S. (1993). Extracellular cellulolytic enzymes of Bacillus circulans are present as two multiple-protein complexes. Applied Biochemistry and Biotechnology, 42: 83-94.

Kluepfel, D.; Shareck, F.; Mondou, F. and Morosoli,  R.  (1986).  Characterization  of  cellulase and xylanase activities of Streptomyces lividans. Applied Microbiology  and Biotechnology,  24:  230-

234.

Kubicek, C.P. (1992). The cellulase proteins of T. reesei: structure, multiplicity, mode of action and regulation of formation. Advances in Biochemical Engineering/Biotechnology, 45: 1-27.

Kuhad, R.C.; Gupta, R. and Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, doi: 10.4061/2011/280696.

Kuhad, R.C.; Singh, A. and Eriksson, K.E.L. (1997). Microorganisms and enzymes involved in the degradation of plant fibre cell walls. Advances in Biochemical Engineering/Biotechnology, 57: 45-125. Kumar, A. and Singh, V.P. (2011). Thermophilic bacteria and their potential for industrial applications. Journal of Plant Development Sciences, 3(1&2): 19-

30.

Kumar, A.; Singh, A. and Singh, V.P. (2011). Industrial enzymes of microbial origin. In: Trivedi, P.C. (ed.) Biotechnology:  A New Approach, Agrobios, India, pp: 291-308.

Lamed,  R.  and  Bayer,  E.A.  (1988).  The cellulosome of Clostridium thermocellum. Advances in Applied Microbiology, 33: 1-46.

Lamed, R.; Morag, E.; Moryosef, O. and Bayer, E.A. (1991). Cellulosome-like entities in Bacteroides cellulosolvens. Current Microbiology, 22: 27-34. Lamed,  R.;  Naimark,  J.;  Morgenstern,  E.  and Bayer,   E.A.    (1987).   Specialized    cell    surface structures    in    cellulolytic    bacteria.    Journal   of Bacteriology, 169: 3792-3800.

Leatham, G.; Myers, G. and Wegner, T. (1990). Biochemical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi Journal, 73: 197-200.

Leonowicz, A.; Matuszewska, A.; Luterek, J.; Ziegenhagen, D.; Wojtas-Wasilewska, M.; Cho, N.S.; Hofrichter, M. and Rogalski, J. (1999). Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 27: 175-185.

Ljungdahl, L.G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use.  Annals of the New York Academy of Sciences, 1125: 308-321.

Lv, W. and Yu, Z. (2013). Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample.  Journal  of  Applied  Microbiology,  114(4):

1001-1007.

MacKenzie, C.R.; Bilous, D. and Johnson, K.G. (1984).      Streptomyces      flavogriseus      cellulase: evaluation   under   various   hydrolysis   conditions. Biotechnology and Bioengineering, 26: 590-594. Maki, M.; Leung, K.T. and Qin, W. (2009). The prospects  of  cellulase-producing  bacteria  for  the bioconversion       of       lignocellulosic       biomass.  International Journal  of Biological  Sciences,  5(5):

500-516.

Mandels,  M.  (1985).  Applications  of  cellulases. Biochemical Society Transactions, 13: 414-415. Mandels,   M.   and   Reese,   E.T.   (1964).   Fungal cellulases   and   the   microbial   decomposition   of cellulose     fabric.     Developments    in    Industrial Microbiology, 5: 5-20.

Mantyla, A.; Paloheimo, M. and Suominen, P. (1998). Industrial mutants and recombinant strains of Trichoderma reesei. In: Harman, G.F. and Kubicek, C.P. (ed.) Trichoderma & Gliocladium– Enzymes, biological   control   and   commercial   applications, Taylor & Francis, London, 2: 291-309.

McCarthy, A.J. (1987). Lignocellulose-degrading actinomycetes.  FEMS  Microbiology  Reviews,  46:

145-163.

McHale,  A.  and  Coughlan,  M.P.  (1980). Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Letters, 117: 319-322.

Meyer,  A.S.;  Jepsen,  S.M.  and  Sorensen,  N.S. (1998). Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. Journal of Agricultural and Food Chemistry, 46: 2439-2446. Moldoveanu,    N.    and    Kluepfel,    D.    (1983). Comparison  of β-glucosidase activities in  different Streptomyces  strains.  Applied  and  Environmental Microbiology, 46: 17-21.

Nakayama, M.; Tomita, Y.; Suzuki, H. and Nisizawa, K. (1976). Partial proteolysis of some cellulase components from Trichoderma viride and substrate specificity of the modified products.  The Journal of Biochemistry, 79: 955-966.

Noe, P.; Chevalier, J.; Mora, F. and Comtat, J. (1986). Action of enzymes in chemical pulp fibres. Part   II:   enzymatic   beating.   Journal   of   Wood Chemistry and Technology, 6: 167-184.

Ohara, H.; Karita, S.; Kimura, T.; Sakka, K. and Ohmiya, K. (2000). Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Bioscience, Biotechnology and Biochemistry, 64: 254-260.

Oikawa, T.; Tsukagawa, Y. and Soda, K. (1998). Endo-β-glucanase   secreted   by   a   psychrotrophic yeast: Purification and characterization.  Bioscience, Biotechnology, and Biochemistry, 62: 1751-1756. Pagés, S.; Gal, L.; Bélaich, A.; Gaudin, C.; Tardif, C.  and  Bélaich,  J.P.  (1997).  Role  of  scaffolding protein     CipC     of Clostridium     cellulolyticum in cellulose degradation. Journal of Bacteriology, 179:

2810-2816.

Pason, P.; Kyu, K.L. and Ratanakhanokchai, K. (2006).   Paenibacillus   curdlanolyticus   strain   B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble        polysaccharides.        Applied        and Environmental Microbiology, 72(4): 2483-2490. Pohlschröder,     M.;     Canale-Parola,     E.     and Leschine,  S.B.  (1995).  Ultrastructural  diversity  of the        cellulase        complexes        of Clostridium papyrosolvens C7.  Journal  of  Bacteriology,   177:6625-6629.

Ponnambalam,  A.S.;  Deepthi,  R.S.  and  Ghosh, A.R. (2011). Qualitative display and measurement of enzyme activity of isolated cellulolytic bacteria. Biotechnology,  Bioinformatics  and  Bioengineering,

1(1): 33-37.

Saha, S.; Roy, R.N.; Sen, S.K. and Ray, A.K. (2006). Characterization of cellulase-producing bacteria  from  the  digestive  tract  of  tilapa, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon  idella  (Valenciennes). Aquaculture Research, 37: 380-388.

Sakthivel, M.; Karthikeyan, N.; Jayaveny, R. and Palani, P. (2010). Optimization of culture conditions for the production of extracellular cellulase from Corynebacterium lipophiloflavum. Journal of Ecobiotechnology, 2(9): 6-13.

Saranraj,  P.;  Stella,  D.  and  Reetha,  D.  (2012).

Microbial cellulases and its applications: A review. International Journal  of  Biochemistry  and Biotech Science, 1: 1-12.

Saratale,       G.D.; Saratale,       R.G.; Lo,       Y.C. and Chang, J.S. (2010). Multicomponent cellulase production  by  Cellulomonas  biazotea  NCIM-2550 and its applications for cellulosic biohydrogen production. Biotechnology Progress, 26(2): 406-416. Schellhorn, H.E. and Forsberg, C.W. (1984). Multiplicity of extracellular  β-(1,4)-endoglucanases of Bacteroides succinogenes S85. Canadian Journal of Microbiology, 30: 930-937.

Shankar, T.; Mariappan, V. and Isaiarasu, L. (2011). Screening cellulolytic bacteria from the mid- gut of the popular composting earthworm, Eudrilus eugeniae (Kinberg). World Journal of Zoology, 6(2):

142-148.

Sharrock, K.R. (1988). Cellulase assay methods: a review. Journal of Biochemical and Biophysical Methods, 17(2): 81-105.

Shipkowski,   S.   and   Brenchley,   J.E.   (2005). Characterization  of    an  unusual  cold-active  beta- glucosidase belonging to family 3 of the glycoside hydrolases     from     the     psychrophilic     isolate Paenibacillus     sp.     strain     C7.     Applied     and Environmental Microbiology, 71: 4225-4232. Shoseyov, O. and Doi, R.H. (1990). Essential 170- kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans  cellulase.  Proceedings of the National Academy of Sciences, USA, 87: 2192-

2195.

Singh, V.K. and Kumar, A. (1998). Production and purification   of   an   extracellular   cellulase   from Bacillus  brevis VS-1. Biochemistry and Molecular Biology International, 45(3): 443-452.

Singh, V.P. and Mukerji, K.G. (1989). Microbes in biotechnology.  In: Mukerji, K.G.;  Singh, V.P. and Garg, K.L. (ed.), Frontiers in Applied Microbiology, Rastogi and Company, Meerut, 3: 61-84.

Tamaru,  Y.; Karita,  S.; Ibrahim,  A.;  Chan, H. and Doi, R.H. (2000). A large gene cluster for the Clostridium  cellulovorans cellulosome.  Journal  of Bacteriology, 182: 5906-5910.

Tomme,   P.;   Warren,   R.A.   and   Gilkes,   N.R. (1995). Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology, 37: 1-81.

Van Zyl,  W.H.  (1985).  A study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate. Biotechnology and Bioengineering, 27(9): 1367-1373.

Vrsanska, M. and Biely, P. (1992). The cellobiohydrolase  I  from  Trichoderma  reesei  QM

9414:        action        on        cello-oligosaccharides.

Carbohydrate Research, 227: 19-27.

Waldrop, M.P.; Balser, T.C. and Firestone, M.K. (2000). Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry, 32: 1837-1846.

Wang,  C.Y.;  Hsieh,  Y.R.;  Ng,  C.C.;  Chan,  H.; Lin,  H.T.;  Tzeng,  W.T.  and Shyu,  Y.T.  (2009). Purification  and  characterization  of  a  novel halostable cellulase from Salinivibrio sp. strain NTU-

05. Enzyme and Microbial Technology, 44: 373-379. Wood, T.M and McCrae, S.I. (1986). The cellulase of   Penicillium   pinophilum:   Synergism   between enzyme  components  in  solubilizing  cellulose  with special   reference   to   the   involvement   of   two immunologically   distinct   cellobiohydrolases.   The Biochemical Journal, 234: 93-99.

Wood, T.M. (1992). Fungal cellulases. Biochemical

Society Transactions, 20: 45-53.

Wood, T.M. and Bhat, M.K. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160: 87-112.

Wood, T.M. and McCrae, S.I. (1972). The purification and properties of the C1 component of Trichoderma koningii cellulases. The Biochemical Journal, 128(5): 1183-1192.

Wood,  T.M.  and McCrae,  S.I.  (1977).  Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydrate Research, 57: 117-

133.

Wood, T.M. and McCrae, S.I. (1982). Purification

and some properties of a (1,4)-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohydrate Research, 110: 291-303.

Wood, T.M. and McCrae, S.I. (1982). Purification and  some properties  of the extracellular  β- glucosidase of the cellulolytic fungus, Trichoderma koningii.  Journal  of  General  Microbiology,  128:

2973-2982.

Wood, T.M.; Wilson, C.A.; McCrae, S.I. and Joblin,  K.N.  (1986).  A highly active  extracellular cellulase    from    the    anaerobic    rumen    fungus Neocallimastix  frontalis.  FEMS  Microbiology Letters, 34: 37-40.

Yanling, H.; Youfang, D. and Yanquan, L. (1991). Two   cellulolytic Clostridium species:   Clostridium cellulosi sp.                nov.                 and Clostridium cellulofermentans sp.  nov.  International  Journal of Systematic and Evolutionary Microbiology, 41: 306-

309.

Yokoe, Y.  and  Yasumasu,  I.  (1964).  The distribution  of  cellulase  in  invertebrates. Comparative Biochemistry and Physiology, 13: 323-

338.

You, Y.W. and Wang, T.H. (2005). Cloning and

expression of endoglucanase of marine cold-adapted bacteria  Pseudoalteromonas  sp.  MB-1.  Wei  Sheng Wu Xue Bao, 45: 142-144.

Zeng, R.; Xiong, P. and Wen, J. (2006). Characterization  and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles, 10: 79-

82.

Zhang, Y.H.P.; Himmel, M.E. and Mielenz, J.R. (2006).  Outlook  for  cellulase  improvement: Screening and selection strategies. Biotechnology Advances, 24: 452-481.