Lebin Thomas, Hari Ram, Alok Kumar and Ved Pal Singh
Applied Microbiology and Biotechnology Laboratory Department of Botany, University of Delhi, Delhi-110 007, India Corresponding author’s e-mail: vpsingh_biology@rediffmail.com
Abstract: Biodegradation of plant cellulose is achieved through a concerted action of a group of enzymes of the cellulase system, synthesized by a diverse range of organisms. This biodegradation holds importance not only in the efficient recycling of cellulosic biomass within the biosphere, but also in a vast variety of industrial and biotechnological applications. In industrial and research arena, there is an increased interest in utilizing cellulases for lignocellulosic biomass conversion for the production of biobased products and bioenergy. This article presents an overview of cellulase producing microorganisms, along with the important applications of cellulases in the bioconversion of lignocellulosic biomass and in several industries like food, animal feed, brewery, wine, textile, laundry, paper and pulp.
Keywords: Cellulase system, Cellulosome, Industrial applications, Lignocellulose bioconversion
REFERENCES
Acharya, A.; Joshi, D.R.; Shrestha, K. and Bhatta, D.R. (2012). Isolation and screening of thermophilic cellulolytic bacteria from compost piles. Scientific World, 10(10): 43-46.
Akhtar, N.; Sharma, A.; Deka, D.; Jawed, M.; Goyal, D. and Goyal, A. (2012). Characterization of cellulase producing Bacillus sp. for effective degradation of leaf litter biomass. Environmental Progress and Sustainable Energy, doi:
10.1002/ep.11726.
Alurralde, J.L. and Ellenrieder, G. (1984). Effect of attached carbohydrates on the activity of Trichoderma viride cellulases. Enzyme and Microbial Technology, 6: 467-470.
Anderson, K.L. and Blair, B.G. (1996). Regulation of the cellulolytic activity of Eubacterium cellulosolvens 5494: a review. SAAS Bulletin, Biochemistry and Biotechnology, 9: 57-62.
Ariffin, H.; Abdullah, N.; Umi Kalsom, M.S.; Shirai, Y. and Hassan, M.A. (2006). Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology, 3(1): 47-53.
Aurilia, V.; Martin, J.C.; McCrae, S.I.; Scot, K.P.; Rincon, M.T. and Flint, H.J. (2000). Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens17 that carry divergent dockerin sequences. Microbiology, 146:
1391-1397.
Bai, S.; Kumar, M.R.; Kumar, D.J.M.; Balashanmugam, P.; Balakumaran, M.D. and Kalaichelvan, P.T. (2012). Cellulase production by Bacillus subtilis isolated from cow dung. Archives of Applied Science Research, 4(1): 269-279.
Barabote, R.D.; Xie, G.; Leu, D.H.; Normand, P.; Necsulea, A.; Daubin, V.; Me´digue, C.; Adney, W.S.; Xu, X.C.; Lapidus, A.; Parales, R.E.; Detter, C.; Pujic, P.; Bruce, D.; Lavire, C.; Challacombe, J.F.; Brettin, T.S. and Berry, A.M. (2009). Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Research, 19(6):
1033-1043.
Bauchop, T. (1979). Rumen anaerobic fungi of cattle and sheep. Applied and Environmental Microbiology, 38: 148-158.
Béguin, P. and Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13(1): 25-58.
Bélaich, J.P.; Tardif, C.; Bélaich, A. and Gaudin, C. (1997). The cellulolytic system of Clostridium cellulolyticum. Journal of Biotechnology, 57: 3-14. Beldman, G.; Searle-Van Leeuwen, M.F.; Rombouts, F.M. and Voragen, F.G.J. (1985). The cellulase of Trichoderma viride: Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β-glucosidases. European Journal of Biochemistry, 146: 301-308. Benesova, E.; Markova, M. and Kralova, B. (2005). α-Glucosidase and β-glucosidase from psychrotrophic strain Arthrobacter sp. C2-2. Czech Journal of Food Sciences, 23: 116-120.
Berger, E.; Jones, W.A.; Jones, D.T. and Woods, D.R. (1990). Sequencing and expression of a cellodextrinase (ced1) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. Molecular Genetics and Genomics, 223: 310-318. Bhat, K.M. and Maheshwari, R. (1987). Sporotrichum thermophile: Growth, cellulose degradation and cellulase activity. Applied and Environmental Microbiology, 53: 2175-2182.
Bhat, M.K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18: 355-
383.
Bhat, M.K. and Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15: 583-620. Borneman, W.S.; Hartley, R.D.; Morrison, W.H.; Akin, D.E. and Ljundahl, L.G. (1990). Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Applied Microbiology and Biotechnology, 33: 345-351.
Boyer, M.H.; Chambost, J.P.; Magnan, M. and Cattanéo, J. (1984). Carboxymethyl-cellulase from Erwinia chrysanthemi. I. Production and regulation of extracellular carboxymethyl-cellulase. Journal of Biotechnology, 1: 229-239.
Caldini, C.; Bonomi, F.; Pifferi, P.G.; Lanzarini, G. and Galante, Y.M. (1994). Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine. Enzyme and Microbial Technology, 16: 286-291.
Chan, K.Y. and Au, K.S. (1987). Studies on cellulase production by a Bacillus subtilis. Antonie van Leeuwenhoek, 53: 125-136.
Cheng, C.L. and Chang, J.S. (2011). Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresource Technology, 102: 8628-8634.
Coughlan, M.P. (1985). Cellulases: Production, properties and applications. Biochemical Society Transactions, 13: 405-406.
Cowan, W.D. (1996). Animal feed. In: Godfrey, T.
and West, S. (ed.) Industrial Enzymology, 2nd edition, Macmillan Press, London, pp: 360-371. Cristobal, H.A.; Breccia, J.D. and Abate, C.M. (2008). Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active beta-D- glucosidases. The Journal of Basic Microbiology, 48:
16-24.
Ding, S.Y.; Bayer, E.A.; Steiner, D.; Shoham, Y. and Lamed, R. (1999). A novel cellulosomal scaffoldin from Acetovibrio cellulolyticus that contains a family 9 glycosyl hydrolase. Journal of Bacteriology, 181: 6720-6729.
Edler, D.J. and Kelly, D.J. (1994). The bacterial degradation of benzoic acid and benzoid compounds under anaerobic conditions: unifying trends and new perspectives. FEMS Microbiology Reviews, 13: 441-
468.
Ekperigin, M.M. (2007). Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. African Journal of Biotechnology,
6(1): 28-33.
Eriksson, K.E. (1978). Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnology and Bioengineering, 70: 317-332.
Fan, L.T.; Lee, Y.H. and Gharpuary, M.M. (1982). The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering/Biotechnology, 23: 157-
187.
Farkas, V.; Kolarova, N. and Labudovfi, I. (1987). Complexation with carrier ampholytes as the possible source of artifacts during isoelectric focusing of cellulase. Biologia (Bratislava), 42: 327-
333.
Ferreira, L.M.A.; Hazlewood, G.P.; Barker, P.J. and Gilbert, H.J. (1991). The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains. The Biochemistry Journal, 279: 793-799.
Fu, X.; Liu, P.; Lin, L.; Hong, Y.; Huang, X.; Meng, X. and Liu, Z. (2010). A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Applied Biochemistry and Biotechnology, 160: 1627-1636.
Galante, Y.M.; De Conti, A. and Monteverdi, R. (1998a). Application of Trichoderma enzymes in textile industry. In: Harman, G.F. and Kubicek, C.P. (ed.) Trichoderma & Gliocladium– Enzymes, biological control and commercial applications, Taylor & Francis, London, 2: 311-326.
Galante, Y.M.; De Conti, A. and Monteverdi, R. (1998b). Application of Trichoderma enzymes in textile industry. In: Harman, G.F. and Kubicek, C.P. (ed.) Trichoderma & Gliocladium– Enzymes, biological control and commercial applications, Taylor & Francis, London, 2: 327-342.
Gilkes, N.R.; Kilburn, D.G.; Miller, R.C., Jr. and Warren, R.A.J. (1991). Bacterial cellulases. Bioresource Technology, 36: 21-35.
Godfrey, T. (1996). Textiles. In: Godfrey, T. and West, S. (ed.) Industrial enzymology, 2nd edition, Macmillan Press, London, pp: 360-371.
Goyal, A.; Ghosh, B. and Eveleigh, D. (1991). Characteristics of fungal cellulases. Bioresource Technology, 36: 37-50.
Gum, E.K. and Brown, R.D., Jr. (1977). Comparison of four purified extracellular 1,4-β-D- glucan cellobiohydrolase from Trichoderma viride. Biochimica et Biophysica Acta, 492: 225-231. Gunata, Y.Z.; Bayonove, C.L.; Cordonnier, R.E.; Arnaud, A. and Galzy, P. (1990). Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii β- glucosidases. Journal of the Science of Food and Agriculture, 50: 499-506.
Gupta, P.; Samant, K. and Sahu, A. (2012). Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology, doi:
10.1155/2012/578925.
Hagerdal, B.; Ferchak, J.D. and Kendall Pye, E. (1980). Saccharification of cellulose by the cellulolytic enzyme system of Thermomonospora sp. I. Stability of cellulolytic activities with respect to time, temperature and pH. Biotechnology and Bioengineering, 22: 1515-1526.
Hayashi, K.; Nimura, Y.; Ohara, N.; Uchimura, T.; Suzuki, H.; Komagata, K. and Kozaki, M. (1996). Low-temperature active cellulase produced by Acremonium alcalophilum JCM 7366. Seibutsu- kogaku Kaishi, 74: 7-10.
Hazlewood, G.P.; Laurie, J.I.; Ferreira, L.M. and Gilbert, H.J. (1992). Pseudomonas fluorescens subsp. cellulosa: an alternative model for bacterial cellulase. Journal of Applied Bacteriology, 72(3):
244-251.
Hesselman, K.; Elwinger, K. and Thomke, S. (1982). Influence of increasing levels of β-glucanase on the productive value of barley diets for broiler chickens. Animal Feed Science and Technology, 7:
351-358.
Hodrova, B.; Kopecny, J. and Kas, J. (1998). Cellulolytic enzymes of rumen anaerobic fungi Orpinomyces joyonii and Caecomyces communis. Research in Microbiology, 149: 417-427.
Hogsett, D.A.; Ahn, H.J.; Bernardez, T.D.; South, C.R. and Lynd, L.R. (1992). Direct microbial conversion- Prospects, progress, and obstacles. Applied Biochemistry and Biotechnology, 34: 527-
541.
Huang, L. and Forsberg, C.W. (1987). Isolation of a cellodextrinase from Bacteroides succinogenes. Applied and Environmental Microbiology, 53: 1034-
1041.
Ibrahim, A.S.S. and El-diwany, A.I. (2007). Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Australian Journal of Basic and Applied Sciences, 1:
473-478.
Irfan, M.; Safdar, A.; Syed, Q. and Nadeem, M. (2012). Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turkish Journal of Biochemistry, 37(3): 287-293.
Jayashree, S.; Lalitha, R.; Vadivukkarasi, P.; Kato, Y. and Seshadri, S. (2011). Cellulase production by pink pigmented facultative methylotrophic strains (PPFMs). Applied Biochemistry and Biotechnology, 164(5): 666-680. Kakiuchi, M.; Isui, A.; Suzuki, K.; Fujino, T.; Fujino, E.; Kimura, T.; Karita, S.; Sakka, K. and Ohmiya, K. (1998). Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. Journal of Bacteriology, 180: 4303-
4308.
Kasana, R.C. and Gulati, A. (2011). Cellulases from psychrophilic microorganisms: a review. Journal of Basic Microbiology, 51: 572-579.
Kasana, R.C.; Salwan, R.; Dhar, H.; Dutt, S. and Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57: 503-507. Khan, J.A.; Ranjan, R.K.; Rathod, V. and Gautam, P. (2011). Deciphering cow dung for cellulase producing bacteria. European Journal of Experimental Biology, 1(1): 139-147.
Khandke, K.M.; Vithayathil, P.J. and Murthy, K.S. (1989). Purification of xylanase, β-glucosidase, endocellulase and exocellulase from thermophilic fungus, Thermoascus aurantiacus. Archives of Biochemistry and Biophysics, 274: 491-500.
Kim, C.H. and Kim, D.S. (1993). Extracellular cellulolytic enzymes of Bacillus circulans are present as two multiple-protein complexes. Applied Biochemistry and Biotechnology, 42: 83-94.
Kluepfel, D.; Shareck, F.; Mondou, F. and Morosoli, R. (1986). Characterization of cellulase and xylanase activities of Streptomyces lividans. Applied Microbiology and Biotechnology, 24: 230-
234.
Kubicek, C.P. (1992). The cellulase proteins of T. reesei: structure, multiplicity, mode of action and regulation of formation. Advances in Biochemical Engineering/Biotechnology, 45: 1-27.
Kuhad, R.C.; Gupta, R. and Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, doi: 10.4061/2011/280696.
Kuhad, R.C.; Singh, A. and Eriksson, K.E.L. (1997). Microorganisms and enzymes involved in the degradation of plant fibre cell walls. Advances in Biochemical Engineering/Biotechnology, 57: 45-125. Kumar, A. and Singh, V.P. (2011). Thermophilic bacteria and their potential for industrial applications. Journal of Plant Development Sciences, 3(1&2): 19-
30.
Kumar, A.; Singh, A. and Singh, V.P. (2011). Industrial enzymes of microbial origin. In: Trivedi, P.C. (ed.) Biotechnology: A New Approach, Agrobios, India, pp: 291-308.
Lamed, R. and Bayer, E.A. (1988). The cellulosome of Clostridium thermocellum. Advances in Applied Microbiology, 33: 1-46.
Lamed, R.; Morag, E.; Moryosef, O. and Bayer, E.A. (1991). Cellulosome-like entities in Bacteroides cellulosolvens. Current Microbiology, 22: 27-34. Lamed, R.; Naimark, J.; Morgenstern, E. and Bayer, E.A. (1987). Specialized cell surface structures in cellulolytic bacteria. Journal of Bacteriology, 169: 3792-3800.
Leatham, G.; Myers, G. and Wegner, T. (1990). Biochemical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi Journal, 73: 197-200.
Leonowicz, A.; Matuszewska, A.; Luterek, J.; Ziegenhagen, D.; Wojtas-Wasilewska, M.; Cho, N.S.; Hofrichter, M. and Rogalski, J. (1999). Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 27: 175-185.
Ljungdahl, L.G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Annals of the New York Academy of Sciences, 1125: 308-321.
Lv, W. and Yu, Z. (2013). Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. Journal of Applied Microbiology, 114(4):
1001-1007.
MacKenzie, C.R.; Bilous, D. and Johnson, K.G. (1984). Streptomyces flavogriseus cellulase: evaluation under various hydrolysis conditions. Biotechnology and Bioengineering, 26: 590-594. Maki, M.; Leung, K.T. and Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 5(5):
500-516.
Mandels, M. (1985). Applications of cellulases. Biochemical Society Transactions, 13: 414-415. Mandels, M. and Reese, E.T. (1964). Fungal cellulases and the microbial decomposition of cellulose fabric. Developments in Industrial Microbiology, 5: 5-20.
Mantyla, A.; Paloheimo, M. and Suominen, P. (1998). Industrial mutants and recombinant strains of Trichoderma reesei. In: Harman, G.F. and Kubicek, C.P. (ed.) Trichoderma & Gliocladium– Enzymes, biological control and commercial applications, Taylor & Francis, London, 2: 291-309.
McCarthy, A.J. (1987). Lignocellulose-degrading actinomycetes. FEMS Microbiology Reviews, 46:
145-163.
McHale, A. and Coughlan, M.P. (1980). Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Letters, 117: 319-322.
Meyer, A.S.; Jepsen, S.M. and Sorensen, N.S. (1998). Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. Journal of Agricultural and Food Chemistry, 46: 2439-2446. Moldoveanu, N. and Kluepfel, D. (1983). Comparison of β-glucosidase activities in different Streptomyces strains. Applied and Environmental Microbiology, 46: 17-21.
Nakayama, M.; Tomita, Y.; Suzuki, H. and Nisizawa, K. (1976). Partial proteolysis of some cellulase components from Trichoderma viride and substrate specificity of the modified products. The Journal of Biochemistry, 79: 955-966.
Noe, P.; Chevalier, J.; Mora, F. and Comtat, J. (1986). Action of enzymes in chemical pulp fibres. Part II: enzymatic beating. Journal of Wood Chemistry and Technology, 6: 167-184.
Ohara, H.; Karita, S.; Kimura, T.; Sakka, K. and Ohmiya, K. (2000). Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Bioscience, Biotechnology and Biochemistry, 64: 254-260.
Oikawa, T.; Tsukagawa, Y. and Soda, K. (1998). Endo-β-glucanase secreted by a psychrotrophic yeast: Purification and characterization. Bioscience, Biotechnology, and Biochemistry, 62: 1751-1756. Pagés, S.; Gal, L.; Bélaich, A.; Gaudin, C.; Tardif, C. and Bélaich, J.P. (1997). Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. Journal of Bacteriology, 179:
2810-2816.
Pason, P.; Kyu, K.L. and Ratanakhanokchai, K. (2006). Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Applied and Environmental Microbiology, 72(4): 2483-2490. Pohlschröder, M.; Canale-Parola, E. and Leschine, S.B. (1995). Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7. Journal of Bacteriology, 177:6625-6629.
Ponnambalam, A.S.; Deepthi, R.S. and Ghosh, A.R. (2011). Qualitative display and measurement of enzyme activity of isolated cellulolytic bacteria. Biotechnology, Bioinformatics and Bioengineering,
1(1): 33-37.
Saha, S.; Roy, R.N.; Sen, S.K. and Ray, A.K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapa, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37: 380-388.
Sakthivel, M.; Karthikeyan, N.; Jayaveny, R. and Palani, P. (2010). Optimization of culture conditions for the production of extracellular cellulase from Corynebacterium lipophiloflavum. Journal of Ecobiotechnology, 2(9): 6-13.
Saranraj, P.; Stella, D. and Reetha, D. (2012).
Microbial cellulases and its applications: A review. International Journal of Biochemistry and Biotech Science, 1: 1-12.
Saratale, G.D.; Saratale, R.G.; Lo, Y.C. and Chang, J.S. (2010). Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production. Biotechnology Progress, 26(2): 406-416. Schellhorn, H.E. and Forsberg, C.W. (1984). Multiplicity of extracellular β-(1,4)-endoglucanases of Bacteroides succinogenes S85. Canadian Journal of Microbiology, 30: 930-937.
Shankar, T.; Mariappan, V. and Isaiarasu, L. (2011). Screening cellulolytic bacteria from the mid- gut of the popular composting earthworm, Eudrilus eugeniae (Kinberg). World Journal of Zoology, 6(2):
142-148.
Sharrock, K.R. (1988). Cellulase assay methods: a review. Journal of Biochemical and Biophysical Methods, 17(2): 81-105.
Shipkowski, S. and Brenchley, J.E. (2005). Characterization of an unusual cold-active beta- glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Applied and Environmental Microbiology, 71: 4225-4232. Shoseyov, O. and Doi, R.H. (1990). Essential 170- kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proceedings of the National Academy of Sciences, USA, 87: 2192-
2195.
Singh, V.K. and Kumar, A. (1998). Production and purification of an extracellular cellulase from Bacillus brevis VS-1. Biochemistry and Molecular Biology International, 45(3): 443-452.
Singh, V.P. and Mukerji, K.G. (1989). Microbes in biotechnology. In: Mukerji, K.G.; Singh, V.P. and Garg, K.L. (ed.), Frontiers in Applied Microbiology, Rastogi and Company, Meerut, 3: 61-84.
Tamaru, Y.; Karita, S.; Ibrahim, A.; Chan, H. and Doi, R.H. (2000). A large gene cluster for the Clostridium cellulovorans cellulosome. Journal of Bacteriology, 182: 5906-5910.
Tomme, P.; Warren, R.A. and Gilkes, N.R. (1995). Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology, 37: 1-81.
Van Zyl, W.H. (1985). A study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate. Biotechnology and Bioengineering, 27(9): 1367-1373.
Vrsanska, M. and Biely, P. (1992). The cellobiohydrolase I from Trichoderma reesei QM
9414: action on cello-oligosaccharides.
Carbohydrate Research, 227: 19-27.
Waldrop, M.P.; Balser, T.C. and Firestone, M.K. (2000). Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry, 32: 1837-1846.
Wang, C.Y.; Hsieh, Y.R.; Ng, C.C.; Chan, H.; Lin, H.T.; Tzeng, W.T. and Shyu, Y.T. (2009). Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-
05. Enzyme and Microbial Technology, 44: 373-379. Wood, T.M and McCrae, S.I. (1986). The cellulase of Penicillium pinophilum: Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. The Biochemical Journal, 234: 93-99.
Wood, T.M. (1992). Fungal cellulases. Biochemical
Society Transactions, 20: 45-53.
Wood, T.M. and Bhat, M.K. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160: 87-112.
Wood, T.M. and McCrae, S.I. (1972). The purification and properties of the C1 component of Trichoderma koningii cellulases. The Biochemical Journal, 128(5): 1183-1192.
Wood, T.M. and McCrae, S.I. (1977). Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydrate Research, 57: 117-
133.
Wood, T.M. and McCrae, S.I. (1982). Purification
and some properties of a (1,4)-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohydrate Research, 110: 291-303.
Wood, T.M. and McCrae, S.I. (1982). Purification and some properties of the extracellular β- glucosidase of the cellulolytic fungus, Trichoderma koningii. Journal of General Microbiology, 128:
2973-2982.
Wood, T.M.; Wilson, C.A.; McCrae, S.I. and Joblin, K.N. (1986). A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiology Letters, 34: 37-40.
Yanling, H.; Youfang, D. and Yanquan, L. (1991). Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. International Journal of Systematic and Evolutionary Microbiology, 41: 306-
309.
Yokoe, Y. and Yasumasu, I. (1964). The distribution of cellulase in invertebrates. Comparative Biochemistry and Physiology, 13: 323-
338.
You, Y.W. and Wang, T.H. (2005). Cloning and
expression of endoglucanase of marine cold-adapted bacteria Pseudoalteromonas sp. MB-1. Wei Sheng Wu Xue Bao, 45: 142-144.
Zeng, R.; Xiong, P. and Wen, J. (2006). Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles, 10: 79-
82.
Zhang, Y.H.P.; Himmel, M.E. and Mielenz, J.R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24: 452-481.