2017, Issue 2, Volume 9

CHANGES IN SOIL PROPERTIES AND CARBON SEQUESTRATION POTENTIAL UNDER INTENSIVE AGRICULTURE AND AGROFORESTRY

Sunita Sheoran1*, Dhram Prakash2 and Ashok Kumar3

1Department of Soil Science, CCS HAU, Hisar, Haryana (India),

2Department of Soil Science, 3Department of Forestry and Natural Resources,

PAU, Ludhiana, Punjab (India)

Email: sheoransunita27@gmail.com

Received-28.01.2017, Revised-13.02.2017

Abstract: Agroforestry has been recognized as a means to reduce CO2 emissions as well as enhancing carbon sinks although the rice-wheat cropping system increases the green house gases level. Agroforestry is a large sink of carbon and its role in carbon cycles is well recognized. The article reviews the impact of different land use systems on properties such as EC, pH and the carbon sequestration potential of soils.  Agroforestry provides a unique opportunity to combine the twin objectives for capturing atmospheric CO2 to ameliorate environment and, improving the soil nutrient status as well. Soil organic carbon has been recorded abundantly in agroforestry systems than other land use systems.  The emphasis of land use systems that led to higher carbon content than other cropping systems can help to achieve net gains in carbon in soils specifically and, significant increases in carbon storage can be achieved by moving from lower biomass land uses.

Keywords: Land-use systems, Agroforestry, Soil properties, Carbon sequestration potential

REFERENCES

Alfaia, S. S., Gilberto A. Ribeiro, Antonio D. Nobre, Regina C. Luizão, Flávio J. Luizão (2004). Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agriculture, Ecosystems and Environment 102: 409–414.

Alfaia, S.S., Magalhães, F.M.M., Yuyama, K. and Muraoka, T. (1988). Efeito da aplicação de calagem e micronutrientes na cultura da soja em Latossolo Amarelo. Acta Amazonica 18: 13–25.

Angus, F., Garrity, D.P., Cassel, D.K. and Mercado, A. (1998) Grain crop response to contour hedgerow systems on sloping Oxisols. Agroforestry Systems 42(2): 107-120.

Ayoub, A.T. (1999). Fertilizers and the environment. Nutr Cycl Agroecosyst 55: 117–121.

Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R. and Mwonga, S. M. (1989) The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya,” Journal of Applied Ecology 26(3): 1005–1024.

Benbi, D.K., Brar, K., Toor, A.S., Singh, P. and Singh, H. (2012). Soil carbon pools under poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-arid India. Nutr Cycl Agroecosyst 92: 107–118.

Benbi, D.K., Biswas, C.R., Bawa, S.S. and Kumar, K. (1998). Influence of farmyard manure, inorganic fertilizers and weed control practices on some soil physical properties in a long-term experiment. Soil  Soil Use Manage 14: 52–54.

Benbi, D.K. and Brar, J.S. (2009). A 25-year record of carbon sequestration and soil properties in intensive-agriculture. Agron Sustain Develop 29: 257–265.

Benbi, D.K. and Brar, J. S. (2009). A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron Sustain Dev 29: 257-265.

Bene, C.D., Tavarini, S., Mazzoncini, M. and Angelini, L.G. (2011). Changes in soil chemical parameters and organic matter balance after 13 years of ramie [Boehmeria nivea (L.) Gaud.] cultivation in the Mediterranean region. Europ J Agron 35: 154-63.

Bertin, C., Yang, X. and Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere,” Plant and Soil 256(1): 67–83.

Bhandari, A.L., Ladha, J.K., Pathak, H., Padre, A.T., Dawe, D. and Gupta, R.K. (2002). Yield and soil nutrient changes in a long-term rice-wheat rotation in India. Soil Sci Soc Am J 66: 162–170

Bhandari, A.L., Ladha, J. K., Pathak, H., Padre, A.T., Dawe, D. and Gupta, R. K. (2002). Yield and soil nutrient changes in a long-term rice-wheat rotation in India. Soil Sci. Soc. Am. J. 66: 162-170.

Bockman, O.C., Kaarstad, O., Lie, O.H. and Richards, I. (1990). Agriculture and Fertilizers. Agricultural Group, Norsk Hydro a.s. Oslo, Norway, 245 pp.

Broder, T., Blodau, C., Biester, H., and Knorr, K. H. (2012). Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences 9: 1479-91.

Burke, I. C., Lauenroth, W. K., Vinton, M. A. et al. (1998). Plant-soil interactions in temperate grasslands,” Biogeochemistry 42(1-2): 121–143.

Carson, B. (1992). The Land, the Farmers, and the Future: A Soil Fertility Management Strategy for Nepal. ICIMOD Occasional Paper No. 21. Nepal.

Chander, K., Goyal, S., Nandal, D.P. and Kapoor, K.K. (1998). Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biology and Fertility of Soils 27: 168–172.

Chauhan, S.K. and Chauhan, R. (2009). Exploring carbon sequestration in poplar-wheat based integrated cropping system. Asia-Pacific Agroforestry News 35: 9-10.

Chauhan, S.K., Beri, V. and Sharma, S.C. (2007a). Studies on carbon sequestration under different farm/agroforestry interventions. Final report of Adhoc Research Project submitted to ICAR New Delhi. 131p. Department of Forestry and Natural Resources, PAU Ludhiana.

Chauhan, S.K., Gupta, N., Walia, R., Yadav, S., Chauhan, R., Mangat, P.S. (2011). Biomass and carbon sequestration potential of poplar-wheat intercropping system in irrigated agroecosystem in India. J Agric Sci Technol A 1: 575–586.

Chauhan, S.K., Sharma, S.C., Chauhan, R., Gupta, N. and Ritu (2010a). Accounting poplar and wheat productivity for carbon sequestration agri-silvicultural system. Ind. For.136: 1174-1182.

Desjardins, T., Lavelle, P., Barros, E., Brossard, M., Chapuis-Lardy, L., Chauvel, A., Grimaldi, M., Guimarães, F., Martins, P., Mitja, D., Muller, M., Sarrazin, M., Tavares Filho, J. and Topall, O. (2000). Dégradadion des pˆaturages amazoniens. Étude et Gestion des Sols 7: 353–378.

Dhiman, R.C. (2009). Carbon footprint of planted poplar in India 2009. ENVIS Forestry Bulletin. 9(2): 70-81.

Dijkstra, F. A. (2003). Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US,” Forest Ecology and Management 175(1–3): 185–194.

Eden, M.J., Furley, P.A., McGregor, D.F.M., Miliken, W. and Ratter, J. (1991). Effect of forest clearance and burning on soil properties in northern Roraima, Brazil. For. Ecol. Manage. 38: 283–290.

Falesi, I.C. and Veiga, J.B. (1986). O solo da Amazˆonia e as pastagens cultivadas. In: Peixoto, A.M., Moura, J.C., Varia, V.P. (Eds.), Pastagens na Amazˆonia. FEALQ, Piracicaba, SP, Brazil, pp. 1–26.

Finzi, A. C., Canham, C. D. and Van Breemen, N. (1998). Canopy tree-soil interactions within temperate forests: species effects on pH and cations,” Ecological Applications 8(2): 447–454.

Gera, M., Mohan, G., Bist, N.S. and Gera, N. (2011). Carbon sequestration potential of Agroforestry under CDM in Punjab state of India. Inian journal of forestry. 34: 1-10.

Ghani, A., Dexter, M. and Perrott, K.W. (2003). Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35: 1231-43.

Gupta, N., Kukal, S.S. and Singh, P. (2006). Soil erodibility in relation to poplar based agroforestry system in north western India.  Int. J. Agri. and Biol. 8: 859-861.

Gupta, N., Kukal, S.S., Bawa, S.S. and Dhaliwal, G.S. (2009). Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agrof. Systems 76(1): 27-35.

Haynes, R.J. (2000). Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol Biochem 32: 211-19.

Howlett, D. S., Mosquera-Losada, M. R., Nair, P. K. R., Nair, V. D. and Rigueiro-Rodrigues, A. (2011). Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain,” Journal of Environmental Quality 40(3): 825–832.

Huang, Q., Li, D., Liu, K., Yu, X., Ye, H., Hu, H., Xu, X., Wang, S., Zhou, L., Duan, Y. and Zhang, W. (2014) Effects of long-term organic amendments on soil organic carbon in apaddy field: A case study on red soil. J Integ Agric 13: 570-76.

Jobbagy, E. G. and Jackson, R. B. (2001). The distribution of soil nutrients with depth: global patterns and the imprint of plants,” Biogeochemistry 53(1): 51–77.

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agrof. Systems 76: 1-15.

Koutika, L.S., Bartoli, F., Andreux, F., Cerri, C.C., Burtin, G., Choné, T., Philippy, R. (1977). Organic matter dynamics and aggregation in soil under rain forest and pasture of increasing age in the eastern Amazon Basin. Geoderma 76: 87–112.

Kumar, A., Hooda, M. S. and Bahadur, R. (1998). Impact of multipurpose trees on productivity of barley in arid ecosystem. Ann. Arid Zone 37: 153-157.

Kuzyakov, Y., Ehrensburger, H. and Stahr, K. (2001). Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem 33: 61-74.

Ladha, J.K., Dawe, D., Pathak, H., Padre, A.T., Yadav, R.L. et al. (2003). How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crop Res 81: 159–180

Lobato, E.M.S.G., Fernandes, A. R., Lobato, A. K. S., Guedes, R. S., Netto, J. R. C., Moura, A. S., Marques, D. J., Ávila, F. W. and Borgo, J. D. H. (2014). The chemical properties of a clayey oxisol from Amazonia and the attributes of its phosphorus fractions. J Food Agric Environ 2: 1328-35.

Manlay, R. J., Chotte, J., Masse, D., Laurent, J. and Feller, C. (2002). Carbon, nitrogen and phosphorus allocation in agro-ecosystems of a West African savanna. III. Plant and soil components under continuous cultivation. Agri Ecosyst Envi 88: 249-69.

McGrath, D.A., Duryea, M.L. and Cropper, W.P. (2001). Soil phosphorus availability and fine root proliferation in Amazonian agroforest 6 years following forest conversion. Agric. Ecosyst. Environ. 83: 271–284.

Montagnini, F. and Nair, P.K.R. (2004). Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrof. Systems 61: 281-295.

Nair, P. K. R., Nair, V. D., Mohan Kumar, B. and Showalter, J. M. (2010). Carbon sequestration in agroforestry systems,” Advances in Agronomy 108: 237–307.

Nair, V.D. and Graetz, D.A. (2004). Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience. Agroforestry Systems 61: 269–279.

Ocio, J.A. and Brookes, P.C. (1990). An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil biology and Biochemistry 22: 685–694.

Pal, R., Melkania, U. and Dhiman, R.C. (2009). Inter-clonal variation in carbon pool of Populus deltoides Bartr. Ind. For. 135: 1209-1216.

Palm, C. A. (1995). Contribution of agroforestry trees to nutrients requirements of intercropped plants. Agroforestry syst 30: 105-24.

Prakash, D. (2016). Dynamics of soil phosphorous and relation to carbon under different cropping systems. PhD Thesis, Punjab Agricultural University, Ludhiana-141004, Punjab, India.

Ralhan, P.K., Rasool, A. and Singh, A. (1996). Return of nutrients through leaf litter on an age series of Poplar plantation in agri-silviculture system in certain parts of Punjab. In: IUFRO-DNAES international meet on resource inventory techniques to support agroforestry and environment activities, pp. 159–163.

Recco, R.D., Amaral, E.F., Pinto, E.M. and Melo, A.W.F. (2000). Avaliação do n´ıvel de carbono em solos tropicais submetidos a plantio de sistemas agroflorestais em diferentes idades na Amazˆonia Ocidental. In: III Congresso Brasileiro de Sistemas Agroflorestais. EMBRAPA, Manaus, Brazil, pp. 55–57.

Regmi, A.P., Ladha, J.K., Pathak, H., Pasquin, E., Bueno, C., Dawe, D., Hobbs, P.R., Joshy, D., Maskey, S.L., Pandey, S.P. (2002). Yield and soil fertility trends in 20-year rice-rice-wheat experiments in Nepal. Soil Sci Soc Am J 66: 857–867

Regmi, A. P., Ladha J. K., Pathak, H., Pasquin, E., Bueno, C., Dawe, D., Hobbs, P. R., Joshy, D., Maskey, S. L. and Pandey, S. P. (2002). Yield and soil fertility trends in 20-year rice-rice-wheat experiments in Nepal. Soil Sci. Soc. Am. J. 66: 857-867.

Reich, P. B., Oleksyn, J., Modrzynski, J. et al. (2005). “Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species,” Ecology Letters 8(8): 811– 818.

Rizvi, R.H., Dhyani, S.K., Yadav, R.S. and Singh, Ramesh (2011). Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr. Sci. 100: 736-742.

Rizvi, R.H., Khare, D. and Handa, A.K. (2010). Construction and validation of models for timber volume of poplar (Populus deltoides) planted in agroforestry in Haryana. Ind.J. Agri. Sci. 80: 841-844.

Saha, S. K., Nair, P. K. R., Nair, V. D. and Kumar, B. M. (2010). Carbon storage in relation to soil size-fractions under tropical tree based land-use systems,” Plant and Soil 328(1): 433–446.

Sanchez, P.A., Villachica, J.H. and Band, D.E. (1983). Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 47: 1171–1178.

Schlesinger, W. H., Raikks, J. A., Hartley, A. E. and Cross, A. F. (1996). On the spatial pattern of soil nutrients in desert ecosystems,” Ecology 77(2): 364–374.

Schoeneberger, M.M. (2009). Agroforestry: working trees for sequestering carbon on agricultural lands. Agrof. Systems 75: 27-37.

Schoreder, P. (1994). Carbon storage benefits of agroforestry system. Agrof. Systems 27: 89-97.

Schreier, H., Brown, S. and Shah, P.B. (1995). Identification of key resource issues: discussions and recommendations, pp. 247-252. In H. Scheier, P.B. Shah and S. Brown (eds.). Challenges in Mountain Resource Management in Nepal: Processes Trends and Dynamics in Middle Mountain Watersheds, Proceeding of a Workshop held in Kathmandu, Nepal, ICIMOD/IDRC/UBC, Kathmandu.

Sharma, G., Sharma, R. and Sharma, E. (2009). Impact of stand age on soil C, N and P dynamics in a 40-year chronosequence of alder-cardamom agroforestry stands of the Sikkim Himalaya. Pedobiologia 52:  401-14.

Sharma, U. and Sharma, V. (2011). Soil as a sink for carbon sequestration: how agroforestry can help? Ind. J. Agrof. 13: 65-77.

Shi, Y., Lalande, R., Hamel, C. and Ziadi, N. (2015). Winter effect on soil microorganisms under different tillage and phosphorus management practices in eastern Canada. Can J Microbiol 61: 1-12.

Singh, P. and Lodhiyal, L.S. (2009). Bioamss and carbon allocation in 8 year old poplar (Populus deltoides Marsh)  plantation in Tarai agroforestry systems of central Himalaya, India. New York Sci. J. 2: 49-53.

Stewart, J. W. B. and Tiessen, H. (1987). Dynamics of soil organic phosphorus.Biochemistry 41: 41-60.

Tandon, V.N., Pandey, M.C., Rawat, H.S., Sharma, D.C. (1991). Organic productivity and mineral cycling in plantations of .Populus deltoides in tarai region of Uttar Pradesh. Indian Forester 117: 596–608.

Tchienkoua, M. and Zech, W. (2004). Organic carbon and plant nutrient dynamics under three land uses in the highlands of West Cameroon. Agric Ecosyst Environ 104: 673-79.

Turner, N. C. and Ward, P. R. (2002). The role of agroforestry and perennial pasture in mitigating water-logging and secondary salinity: Summary. Agric. Water Manage 53: 271-275.

Ulery, A. L., Graham, R. C., Chadwick, O. A. and Wood, H. B. (1995). Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma 65(1-2): 121–134.

Vaidya, A., Turton, C.,  Joshi, K.D. and Tuladhar, J.K. (1995). A system analysis of soil fertility issues in the hills of Nepal: implications for future research, pp. 63-80. In H. Scheier, P.B. Shah and S. Brown (eds.). Challenges in Mountain Resource Management in Nepal: Processes Trends and Dynamics in Middle Mountain Watersheds, Proceeding of a Workshop Held in Kathmandu Nepal, ICIMOD/IDRC/UBC.

Wang, H., Huang, Y., Huang, H., Wang, K.M. and Zhou, S.Y. (2005). Soil properties under young Chinese fir-based agroforestry system in mid-subtropical China. Agroforestry Systems 64: 131–141.

Wardle, D. A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Bioll Review 41: 321-58.

Zomer, R. J., Trabucco, A.. Coe, R. and Place, F. (2009). Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry, ICRAF Working Paper no. 89, World Agroforestry Centre, Nairobi, Kenya.