Sourav Mukherjee and Sudipta Roy*
Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, INDIA
Email:dr.sudiptaroy@gmail.com
Received-10.11.2024, Revised-04.12.2024, Accepted-19.12.2024
Abstract: Plumbago zeylanica L. (Family: Plumbaginaceae) is known for its immense therapeutic potential. This study aims to find a relationship between the morphological characters and phytochemical contents of naturally grown four accessions of P. zeylanica from different districts of West Bengal. Different plant descriptors were studied for their morphological variations. The phytochemical contents from various plant parts demonstrated the superiority of the root. Morphological parameters and root phytochemicals revealed a strong correlation between total tannin content (TTCR) and leaf characters and between total phenolic content (TPCR) with stem diameter and petiole base width. The plumbagin content correlated with root fresh weight, petiole base width, and salt gland index. The studied environmental parameters showed an influence on the morphological and phytochemical spectrum. Principal component and cluster analysis distinguished the four accessions to identify an elite chemotype of P. zeylanica.
Keywords: Correlation, Morphology, Multivariate analysis, Phytochemical, Plumbago zeylanica
References
Barrameda-Medina, Y., Blasco, B., Lentini, M., Esposito, S., Baenas, N., Moreno, D. A. and Ruiz, J. M. (2017). Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco. Plant Science, 258: 45-51.
Chabeli, P. M., Mudau, F. N., Mashela, P. W. and Soundy, P. (2008). Effects of nitrogen, phosphorus and potassium nutrition on seasonal tannin content of bush tea (Athrixia phyliciodes DC.). South African Journal of Plant and Soil, 25(2): 79-83.
Chaplot, B. B., Dave, A. M. and Jasrai, Y. T. (2006). A valued medicinal plant-Chitrak (Plumbago zeylanica Linn.): Successful plant regeneration through various explants and field performance. Plant Tissue Culture and Biotechnology, 16(2): 77-84.
Chishaki, N. and Horiguchi, T. (1997). Responses of secondary metabolism in plants to nutrient deficiency. In: Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., Sekiya, J. (eds) Plant Nutrition for Sustainable Food Production and Environment. Developments in Plant and Soil Sciences, vol 78. Springer, Dordrecht.
Israni, S. A., Kapadia, N. S., Lahiri, S. K., Yadav, G. and Shah, M. B. (2010). An UV-visible spectrophotometric method for the estimation of plumbagin. International Journal of Chem Tech Research, 2(2): 856-859.
Khadivi-Khub, A. and Barazandeh, M. (2015). A morphometric study of autochthonous plum genotypes based on multivariate analysis. Erwerbs-Obstbau, 57(4): 185-194.
Kolstad, A. L., Asplund, J., Nilsson, M. C., Ohlson, M. and Nybakken, L. (2016). Soil fertility and charcoal as determinants of growth and allocation of secondary plant metabolites in seedlings of European beech and Norway spruce. Environmental and Experimental Botany, 131: 39-46.
Kumar, S., Kumar, S. and Mohapatra, T. (2021). Interaction between macro‐and micro-nutrients in plants. Frontiers in Plant Science, 12: 665583.
Kumar, S., Yadav, M., Yadav, A. and Yadav, J. P. (2017). Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. f. South African Journal of Botany, 111: 50-59.
Lindsay, W. L. and Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3): 421-428.
Liu, Z., Zhao, M., Tennakoon, K. and Liu, C. (2024). Climate factors determine large-scale spatial patterns of stomatal index in Chinese herbaceous and woody dicotyledonous plants. Science of The Total Environment, 949: 175112.
Maiti, D. and Das, D. K. (2007). Evaluation of different analytical methods for the estimation of available N, P, K and Zn in soil. Archives of Agronomy and Soil Science, 53(1): 89-94.
Mandavkar, Y. D. and Jalalpure, S. S. (2011). A comprehensive review on Plumbago zeylanica Linn. African Journal of Pharmacy and Pharmacology, 5(25): 2738-2747.
Mumivand, H., Khanizadeh, P., Morshedloo, M. R., Sierka, E., Żuk-Gołaszewska, K., Horaczek, T. and Kalaji, H. M. (2021). Improvement of growth, yield, seed production and phytochemical properties of Saturejakhuzistanicajamzad by foliar application of boron and zinc. Plants, 10(11): 2469.
Munakata, R., Larbat, R., Duriot, L., Olry, A., Gavira, C., Mignard, B., Hehn, A. and Bourgaud, F. (2019). Polyphenols from plant roots: An expanding biological frontier. Recent Advances in Polyphenol Research, 6: 207-236.
Naidoo, Y. and Naidoo, G. (1998). Sporobolus virginicus leaf salt glands: morphology and ultrastructure. South African Journal of Botany, 64(3): 198-204.
Nsuala, B. N., Kamatou, G. P., Sandasi, M., Enslin, G. and Viljoen, A. (2017). Variation in essential oil composition of Leonotis leonurus, an important medicinal plant in South Africa. Biochemical Systematics and Ecology, 70: 155-161.
Nurlela, N., Nurfalah, R., Ananda, F., Ridwan, T., Ilmiawati, A., Nurcholis, W., Takemori, H. and Batubara, I. (2022). Variation of morphological characteristics, total phenolic, and total flavonoid in Adenostemmalavenia, A. madurense, and A. platyphyllum. Biodiversitas, 23(8): 3999-4005.
Ojha, S., Raj, A., Roy, A. and Roy, S. (2018). Extraction of total phenolics, flavonoids and tannins from Paederiafoetida L. leaves and their relation with antioxidant activity. Pharmacognosy Journal, 10(3): 541-547.
Paul, S., Naqvi, A. A., Gupta, M. M. and Khanuja, S. P. (2011). Relationship between morphological traits and secondary metabolites in Artemisia annua L. by using correlation and path analysis. Electronic Journal of Plant Breeding, 2(3): 466-472.
Riasat, M., Pakniyat, H., Heidari, B. and Jafari, A. A. (2018). Variations in phytophenol compounds in association with morphological traits in Trigonella spp. accessions. Annual Research & Review in Biology, 25(1): 1-16.
Roy, A., Sharma, N. and Bharadvaja, N. (2022). Assessment of phytochemical and genetic diversity analysis of Plumbago zeylanica L. accessions. Genetic Resources and Crop Evolution, 69(1): 209-219.
Shukla, P. K., Misra, A., Patra, K. K. and Srivastava, S. (2020). Study of metabolite variability in Plumbago zeylanica Linn. collected from different localities of the Gangetic plains of India. JPC–Journal of Planar Chromatography–Modern TLC, 33: 179-189.
Sudhakaran, M. V. (2019). Micromorphology of salt glands and content of marker compound plumbagin in the leaves of Plumbago zeylanica Linn. Pharmacognosy Journal, 11(1): 161-170.
Walkley, A. and Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F. and Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4): 762.
Yuan, F., Leng, B. and Wang, B. (2016). Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt?. Frontiers in Plant Science, 7: 977.
Zeng, L., Chen, Y., Liang, L., Yang, L., Wang, S., Li, Q. and Wang, Z. (2024). Comparison of different parts of Plumbago zeylanica L. through UPLC-MS/MS metabolite profiling and evaluation of their antioxidant and antifungal potential. Pharmacological Research-Natural Products, 5: 100118.
Zhou, M., Liu, C., Wang, J., Meng, Q., Yuan, Y., Ma, X., Liu, X., Zhu, Y., Ding, G., Zhang, J., Zeng, X. and Du, W. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports, 10(1): 265.