

SEASONAL INCIDENCE AND NATURAL ENEMIES OF LAC INSECT (*LACCIFER LACCA*) IN KORBA

Bhupendra Singh Rajpoot, P.K. Bhagat, Y.K. Meshram*, G.P. Painkra and K.L. Painkra

Raj Mohini Devi College of Agriculture and Research Station,
Ambikapur-497001 Chhattisgarh, India

College of Agriculture and Research Station, Janjgir-champa Chhattisgarh, India

Received-05.12.2020, Revised-28.12.2020

Abstract: The seasonal incidence of natural enemies of lac insect was carried out on Rangeeni lac during 2019-2020 at Kerajhariya Village, Pali block, Korba District of Chhattisgarh. Natural enemies of lac viz. *Eublemma amabilis* and *Pseudohypatopa pulverea* recorded as key or major predator of lac, these was noticed a potential Predator reached peak second fortnight of April with 10.00 and 9.80 insect /30 cm lac sticks respectively, whereas *Chrysopa* sp. recorded as moderate predator, *Tachardiaephagus tachardiae* was recorded as major parasitoid these parasitoid reached peak First fortnight of April with 6.60 to 9.40 insect per 30cm of lac sticks, whereas *Eupelmus tachardiae* and *Aprostocetus purpurenu* as a minor parasitoid of baisakhi lac crop.

Keywords: Seasonal incidence, Lac insect, Natural enemies

INTRODUCTION

Lac is a natural, non-poisonous, biodegradable, inodorous, taste less, hard resin, non-injurious to health and non-timber forest produces (NTFP). Lac is one of the most precious gifts of nature to man. It is the natural commercial resin of animal origin, being actually the secretion of a tiny scale insect, *Kerria lacca* Kerr. *Karria lacca* belongs to the class-insecta, family-Tachardiidae (Kerriidae), super family-Coccoidea, and order- Hemiptera, suborder-homoptera. It has a reddish or dark brown colour with a disagreeable smell. The word “lac” is derived from a Sanskrit word which means “hundred thousand” indicating the gregarious habit of this insect. It is commonly called shellac and in Nepal, the laha. The insect are commercially utilize global for the production of lac which has various industrial applications. *Laccifer lacca* is the common Indian lac insect. Lac is produced mostly in India, Bangladesh, Thailand and china. India is still the largest producer of lac in the world. Out of the nine genera and 99 species of lac insects reported throughout the world, 2 genera and 26 species are found in India out of which *Kerria lacca* is the most widely available species in the country (Paul *et al.* 2013). Major two factors which are responsible for reduction in yield of lac crop viz: biotic factor and abiotic factors, biotic factors includes predators and parasitoids while abiotic factors includes weather factors.

Major predators of lac insect are *Eublemma amabilis* moore (Lepidoptera; noctuidae) *Psuedohypatopa pulverea* meyr (Lepidoptera; blastobesidae) and *Chrysopa lacciperla* kimmings and *C madestes* banks (chrysopidae; neuroptera) (Sharma *et al.*,2006) The lac insect is prone to attack by insect predators and parasitoids. Among them, two Lepidopteron predators, *Eublemma amabilis* Moore (Lepidoptera: Noctuidae) and *Pseudohypatopa pulverea* Mayr.

(Lepidoptera: Blastobasidae) are key pests causing a loss of around 30-40% to lac production (Glover, 1937, Narayanan, 1962, Jaiswal *et al.*, 2008). *Chrysopa lacciperla* Kimmins and *C. madestes* Banks (Chrysopidae: Neuroptera) are the most prevalent in lac ecosystems and they caused considerable damage especially in the winter season (Aghani) kusmi lac crop. Larvae of *E. amabilis* and *P. pulverea* bore into the lac encrustations where they remain confined while they feed on the lac insects

Predators are main factor that affect lac cultivation, around 35 to 40 percent loss cause by predators (Glover, 1937; Jaiswal *et al.*, 2008) while 5 to 10 percent damage cause by parasitoids (Varshney, 1976). Different management practices are used to recover yield loss due to predators and parasitoids like cultural and physical (Bhattacharya *et al.*,2006) biological (Bhattacharya *et al.*, 2008, SiMing *et al.*,2010), and chemical (Singh *et al.*,2009). Since the government of India has banned endosulfan insecticide, new and safer insecticide need to evaluated for the management of lac insect predators and parasitoids (Arora *et al.*2009). Hence the present research entitled study the seasonal incidence of natural enemies of lac insect.

MATERIALS AND METHODS

The seasonal incidence of natural enemies of lac insect was carried out on Rangeeni lac during 2019-2020 at Kerajhariya Village, Pali block, Korba district of Chhattisgarh. Population of natural enemies were recorded from randomly selected 5 host plants of palas at fortnightly intervals during the rangeeni, strain baisakhi season. The three samples will be collected from 30 cm lac sticks in each 5 plant *i.e.* top, middle and lower part. Collected samples of lac sticks were kept in 60 mesh nylon basket for

*Corresponding Author

emergence of natural enemies to record their incidence.

RESULTS AND DISCUSSION

The associated three predators i.e. *Eublemma amabilis*, *Pseudohypatopa pulvrea*, *Chrysopa* sp. and three parasitoids i.e. *Tachardiaephagus tachardiae*, *Eupelmus tachardiae*, *Aprostocetus purpureus* were recorded in season Rangeeni Baisakhi (Summer) from at Kerajhariya Village, Pali block, korba district of Chhattisgarh during year 2019-2020 (Table 1).

Eublemma amabilis was recorded as major or key predator of lac growing field of Palas from Kerajhariya Village, Pali block, korba district of Chhattisgarh. The mean larval populations of *Eublemma amabilis* was noticed ranged between 1-11 numbers during the crop period. Maximum population of *E. amabilis* 10.00 was exhibited on 11th fortnight in between 20st April to 5th May whereas 1.2 minimum on 7th fortnight (5th February to 20th February).

Pseudohypatopa pulvrea predator was noticed as moderate population against lac insect *Kerria lacca* from Kerajhariya Village, Pali block, korba district of Chhattisgarh, Chhattisgarh. The mean larval populations of black moth (*Pseudohypatopa pulvrea*) are presented on table1. *Pseudohypatopa pulvrea* population was recorded range between 1-11 numbers cm lac stick of 30 cm during the crop period. The mean larval population of *Pseudohypatopa pulvrea* was maximum on 11th fortnight in between 20st April to 5th May and minimum on 7th fortnight (5th February to 20th February).

Chrysopa sp. was also recorded as predator of lac insect *Kerria lacca* with low intensity in aghani crop of Palas during present investigation. The mean larval populations of *Chrysopa* sp. was varied between 0-4 numbers in lac stick of 30 cm during the crop period. The mean larval population of *Chrysopa* sp. was

maximum during 2nd fortnight in between 20th December to 5th January and minimum on 9th fortnight (5th March to 20th March).

Tachardiaephagus tachardiae exhibited as moderate parasitoid of lac insect *Kerria lacca* in rangeeni strain of palas during present investigation. The mean larval populations of *Tachardiaephagus tachardiae* are presented in table no. 1. *Tachardiaephagus tachardiae* population was found ranged 0-5 numbers lac stick of 30 cm during the crop period. The mean larval population of *T. tachardiae* was maximum on 11th fortnight in between 5th April to 20th April and minimum on 6th fortnight (20th February to 5th March) after the brood lac inoculation.

Eupelmus tachardiae was recorded as parasitoid of lac insect *Kerria lacca*. *Eupelmus tachardiae* population was found varied between 0-3 numbers in lac stick of 30 cm during the crop period. The mean larval population of *E. tachardiae* was maximum on 2nd fortnight in between 20th April to 5th May and minimum on 6th fortnight (5th January to 20th February) after the brood lac inoculation.

Aprostocetus purpureus was noticed the parasitoid first appearance on the crop during first fortnight of march with 0.40 parasitoid per 30 cm stick whereas, peak density was observed in 11th fortnight of April with 0.60 parasitoid per 30 cm lac stick.

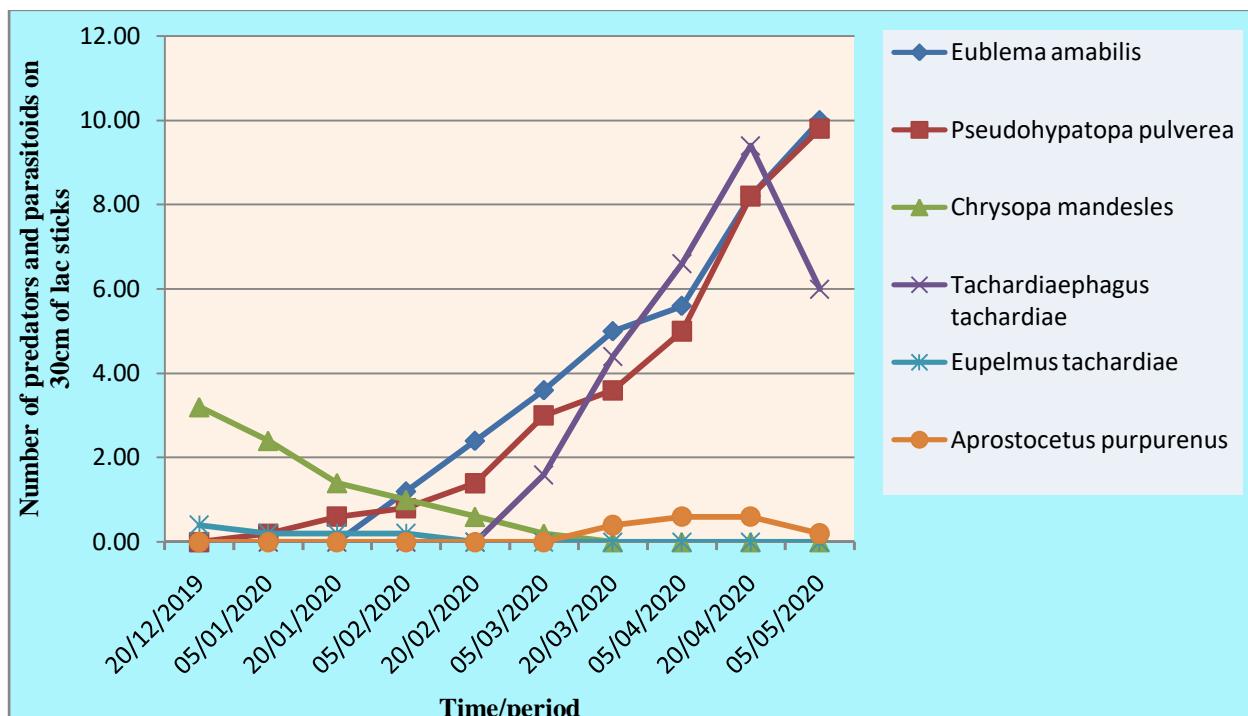

Meshram et al (2017) who studied during year 2014-15 and 2015-16 at Korba District of Chhattisgarh. The predators viz. *Eublemma amabilis* and *Pseudohypatopa pulvrea* were recorded as key predator fauna of lac reached peak first fortnight of May with 9.30 and 10.10 insect/30 cm lac sticks, whereas the incidence of *Chrysopa mandestes* was noticed minor. *Tachardiaephagus tachardiae* was noticed a potential parasitoid reached peak second fortnight of April with 9.60 and 9.80 insect/30 cm lac sticks but in case of *Aprostocetus purpureus* and *Eupelmus tachardiae* were noticed as minor parasitoid of Rangeeni lac.

Table 1. Incidence of predator/parasitoid of lac insect on Rangeeni crop of Palas plant during 2019-2020.

Host	Crop	Collection	Predators			Parasitoid	
			Ea	Pp	Cm	Tt	Et
Palas	Baisakhi	20/12/2019	0.00	0.00	3.20	0.00	0.40
		05/01/2020	0.00	0.20	2.40	0.00	0.20
		20/01/2020	0.00	0.60	1.40	0.00	0.20
		05/02/2020	1.20	0.80	1.00	0.00	0.20
		20/02/2020	2.40	1.40	0.60	0.00	0.00
		05/03/2020	3.60	3.00	0.20	1.60	0.00
		20/03/2020	5.00	3.60	0.00	4.40	0.00
		05/04/2020	5.60	5.00	0.00	6.60	0.00

20/04/2020	8.20	8.20	0.00	9.40	0.00	0.60
05/05/2020	10.00	9.80	0.00	6.00	0.00	0.20
Total	36.00	32.60	8.80	28.00	1.00	1.80

Ea = *Eublemma amabilis*, Pp= *Pseudohypatopa pulvrea*, Cm= *Chrysopa mandesles* Tt=*Tachardiaephagus tachardiae*, Et=*Eupelmus tachardiae*, Ap=*Aprostocetus purpureus*

Fig 1. Population fluctuation of lac predators and parasitoids on rangeeni strain during 2019-20

REFERENCES

Arora, S.P., Dureja, A.K., Kanojia and Bambawale, O.M. (2009). Pesticide Their Classification Based on WHO and Global Status of Hazardous Pesticides National Centre for. IPM, LBS Building, Pusa Campus, IARI, New Delhi. pp110.

Bhattacharya, A., Jaiswal, A.K., Kumar, S. and Kumar, K.K. (2006). Management of lepidopteran insect predators of lac insect through habitat manipulation. Entomon Trivandrum, India: Association for Advancement of Entomology. 31(1): 53-56.

Bhattacharya, A., Jaiswal, A.K. and. Singh, J.P. (2008). Management of lac insect predators through IPM based bioregional approaches. Emerging trends of researches in insect pest management and environmental safety,; 1(2): 221-226.

Glover, P.M. (1937). Entomological aspects of lac research in India,; p 261-266

Jaiswal, A.K., Bhattacharya, Kumar, A.S. and Singh, J.P. (2008). Evaluation of *Bacillus Thuringiensis* Berliner subsp. Kurstaki for management of lepidopteran pests of lac insect. Entomon, Vol. 33, pp: 1-5.

Meshram, Y.K., Gupta, Rajeev and Joshi, Bhupesh (2017). Prevalence of Natural Enemies Associated with Lac Insect *Kerria lacca* Kerr. at Korba District of Chhattisgarh, Trends in Biosciences 10(48). : 9587-9590.

Meshram, Y.K., Gupta, Rajeev, Banafar, K.N.S., Katlam, B.P. and Joshi, Bhupesh (2017). Management of prevalence of Natural Enemies, *Eublemma amabilis* (Moore) by novel insecticides at Korba district of Chhattisgarh. Journal of Plant Development Sciences, 9(12):1131.

Meshram, Y.K., Bhagat, P. K. and Devi, Payal (2018). Management of Prevalence of Natural Enemy, *E. amabilis* (Moore) by Novel Insecticides at Korba District of Chhattisgarh, India International Journal of Current Microbiology and Applied Sciences., Special Issue-7 pp. 732-737.

Narayanan, E.S. Pest of lac in India. In: **Mukhopadhyay, B., Muthana, M.S. (Eds.).** (1962). A monograph on lac. Indian Lac Research Institute, Ranchi, India.; pp: 90-113.

Paul, B., Kumar, S. and Das, A. (2013). Lac cultivation & their host trees found in Bastar Forest Division. Plant Science Feed., 3(1): 8-12.

Sharma, K.K., Jaiswal, A.K., Kumar, K.K. (2006). Role of lac culture in biodiversity conservation: issues at stake and conservation strategy. Current Science. 91:894-898.

Si, Ming, W., C. You, Qing, Li, Qiao, Lu, ZhiXing, Liu, ChunJu and Guo, ZuXue (2010). The influence of ant-visiting Kerria yunnanensis on populations of Holcocera pulvrea in lac plantation. *Chinese Bull. Ento.*,; 47(4): 730-735.

Singh, J.P., Jaiswal, A.K., Monobrullah, M. and Bhattacharya, A. (2009). Response of some selected insecticides on neuropteran predator (Chrysopa lacciperda) of lac insect (Kerria lacca). *Indian J. Agri. Sci.*,; 79(9): 727-731.

Varshney, R.K. (1976). A check list of insect parasites associates with lac. *Orient Insects*, 10(1):55-78.