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Abstract: Copper oxychloride (COC) is extensively utilized in agriculture, but its accumulation in soil can threaten soil
health and productivity. This research evaluated two analytical techniques—titration and atomic absorption spectroscopy
(AAS)—to measure copper levels in soils from COC-treated and control areas in four districts of Kerala, India. A total of 64
samples were examined on the 15" and 30" days following COC application. Both methods consistently found low copper
concentrations in control soils (<0.4 ppm), whereas treated soils exhibited significantly higher levels, ranging from
70.08+0.03 ppm to 132.00+1.10 ppm on day 15™ and decreasing to 61.85+1.60 ppm to 104.90+0.85 ppm by day 30" in
titration tests. AAS reported slightly higher values, demonstrating its superior sensitivity and precision. Both methods
showed a 15-30% reduction in copper levels over time, indicating environmental dissipation. While titration is economical
for routine assessments, AAS offers more dependable results for accurately monitoring copper contamination in agricultural

soils.
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INTRODUCTION

Copper based fungicides are in use in agriculture
since a long time, Bordeaux mixture (a
combination of lime and copper sulphate) being the
first among them which was initially used to control
downy mildew in vineyards. Presently, a variety of
copper-based fungicides are used for crop protection,
and these include copper oxychloride (COC), copper
hydroxide, copper sulphate, bordeaux mixture and
copper acetate (Chrisfield ef al., 2021; Burandtet al.,
2023; Gao et al., 2023). COC, a commonly used
fungicide in agriculture was initially employed to
control diseases particularly in orchards and
vineyards. Its chemical composition, represented as
Cu,(OH)3Cl, allows it to perform as a broad-
spectrum plant protectant that helps to combat fungal
pathogens like Phytophthora infestans responsible
for late blight in potato, Phytophthora palmivora
causing abnormal leaf fall

cassicola causing Cornyespora leaf fall in rubber and

and Cornyespora

Guignardia  citricarpa  infesting citrus  plants
(Jayasuriya, 2006; Schutte et al., 2012; Ferreira et
al., 2014; Keiblinger et al., 2018; Manju et al., 2019;
Oghama et al., 2023).

*Corresponding Author

Application of COC in rubber plants retains the
copper particles appropriately distributed on the leaf
surface and stalks, even during high humidity and
heavy rainfall ensuring proper protection from
Phytophthora palmivora, thus improving the yield of
rubber and rubber latex production. Research have
demonstrated that COC accumulation in soil
adversely affect soil microbial community including
beneficial fungi and bacteria. Copper accumulation
in soil disrupts soil fungal activity. Research
indicates that COC residues in soil significantly
reduce microbial biomass which alters the functional
diversity of soil fungal community (Masaka and
Muunganirwa, 2007; Keiblinger et al., 2018; Wang et
al., 2018). Soil pH, chemical forms of copper and
soil organic matter influence the bioavailability of
COC in soil. Bioavailability of COC 1is higher
compared to other copper-based fungicides like
bordeaux mixture which leads to more environmental
impacts (Schutte ef al., 2012; Keiblingeret al., 2018).
COC also has detrimental impacts on soil fauna,
especially earthworms. Exposure to COC decreases
earthworm growth and impacts their reproduction,
which are vital for maintaining soil structure and
fertility. A decrease in earthworm population leads to
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reduced soil aeration and nutrient availability
(Eijsackers et al., 2005; Wang et al., 2018). In
addition to these environmental implications, COC is
also known to induce oxidative stress in plants. Even
though copper is an essential plant micronutrient,
higher concentration leads to the production of
reactive oxygen species (ROS) that damages cellular
structure thus impairing plant growth (Ferreira et al.,
2014). Hence this study was performed to compare
efficacy of two different methods for determining the
copper concentration the active ingredient of COC in
soil samples.

MATERIALS AND METHODS
Study Area and Sample Collection

Details of the study area are outlined in table 1.
According to data from the COC application
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collected by the Regional Rubber Board (RRB) in
Kerala, India, a total of 64 soil samples (192 in
triplicate) were gathered from both COC-treated and
untreated control sites (where no pesticides were
applied) across four locations in the Kasaragod,
Kannur, Kozhikode, and Wayanad districts of Kerala,
India, as specified in figure 1. These samples were
collected on the 15™ and 30™ days following COC
application. Ongoing analysis indicated that pesticide
contamination peaked on the 15" day after COC
application, followed by a gradual decline, with the
most notable reduction observed by the 30™ day.
Consequently, samples for further research were
collected on the 15™ and 30™ day post-COC
application. The samples were transported to the
laboratory in ice boxes, air-dried, sieved through a
2mm mesh, and stored at room temperature for later
analysis.
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Figure 1: Soil Sampling Sites
COC Analysis and the mixture was shaken for 5 minutes. After

COC concentration in soil samples was determined
using titration method and atomic absorption
spectroscopy (AAS).

Determination of COC concentration
samples using titration method
Approximately 0.20 g of soil sample was placed in a
250 ml conical flask, to which 3 ml of concentrated
nitric acid and 20 ml of distilled water were added,

in soil

cooling, 1 g of urea was added and the solution was
boiled for 5 minutes. Once cooled, 1 g of sodium
carbonate was added. Subsequently, 5 ml of a 10%
acetic acid solution was introduced to dissolve the
precipitate. Then, 5 ml of a 30% potassium iodide
solution was added, and the solution was titrated with
0.IN standard sodium thiosulphate until a pale straw
yellow colour appeared. Following this, 2 g of
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potassium thiocyanate and 1 ml of a 1% starch
solution were added, and the titration continued until
the blue colour disappeared (Sridevi et al., 2011).
The copper concentration was calculated and
expressed in ppm.

Determination of COC concentration in soil
samples using AAS method

The protocol by Shah et al. (2013) was employed to
determine the active copper ingredient in COC. A
standard solution of COC fungicide was obtained
from Sigma-Aldrich Chemicals Private Limited,
Bangalore, India. About 1 g of powdered soil sample
was placed in a conical flask, and 10 ml of HNO;
was added. The solution was left to stand for 24
hours. Then, 5 ml of HCIO, was added and the
solution was heated until its volume reduced to 3 ml.
After complete cooling, the solution was filtered
using Whatman No 42 filter paper. The filtrate was
then diluted to 25 ml in a volumetric flask using
double-distilled water. The copper concentration in
the filtrate was measured at a wavelength of 324.80
nm using atomic absorption.

RESULTS AND DISCUSSION

Copper oxychloride (COC) application led to
markedly elevated copper concentrations in test soil
samples across all four districts (Kasaragod, Kannur,
Kozhikode, and Wayanad), as determined by both
titration and atomic absorption spectroscopy (AAS).
Control samples consistently showed low baseline
levels (<0.4 ppm), while test samples exhibited
concentrations far exceeding this. Titration results
revealed sharp increases post-COC application.
Copper values on day 15" found in the range
between in 0.11+0.01 ppm and 0.39+0.02 ppm
control and in the test samples from 70.08+0.03ppm
to 132.00+1.10 ppm. On 30™ day in the control
samples values ranged between 0.08+0.01ppm and
0.32+0.03 ppm and, in test samples it was found in
the range between 59.10+0.40 ppm and 99.01+0.23
ppm. AAS results confirmed these findings, often
showing slightly higher peaks. On dayl15™ of COC
application copper values were observed in the range
between 0.07+0.03 ppm and 0.40+0.03 ppm in
control and, from 75.10+0.24 ppm to 135.08+1.08
ppm in the test samples. By day 30" test

concentrations declined but remained elevated. On
30" day in the control samples, values ranged
between 0.04+0.01 ppm to 0.38+0.06 ppm and in test
samples it was found to be in the range between
61.85+1.60 ppm to 104.90+0.85 ppm. Both methods
confirmed a consistent 15-30% decline from day 15™
to 30" across districts. Both techniques exhibited
strong spatial consistency across 16 sites, validating
COC npersistence, but AAS demonstrated superior
sensitivity, particularly for subtle district variations
(e.g., Kozhikode's lower peaks). Titrimetry proved
simpler and cost-effective for field screening, though
its indirect iodide-based endpoint may underestimate
tightly bound copper fractions released more
completely by AAS digestion. Standard errors
overlapped minimally, indicating high
reproducibility; AAS is recommended for precise
regulatory monitoring in copper-contaminated soils.
These trends align with prior reports of copper
accumulation from COC and similar copper based-
fungicides (Aarya and Mathew, 2020; Kakutey ef al.,
2023; Matse et al., 2024). The reductions over time
likely stem from leaching, soil/plant uptake, or
environmental factors like moisture and temperature
influencing bioavailability (Droz ef al., 2021; Cheng
et al., 2024). Excess copper, while an essential
micronutrient, proved toxic at these concentrations. It
disrupts integrity,
enzyme/photosynthetic  activity, root  growth,
biomass, and causes chlorosis/necrosis (Kumar et al.,
2021; Mir et al., 2021; Al-Jayashi et al., 2023; Feil et
al., 2023). Soil nutrient availability (P, K, Mn, Fe)
diminishes via reactions with oxides and organic

plant membrane

matter, curbing crop yields (Schutte et al., 2012;
Ambrosini et al., 2018). Copper also harms soil
biota, particularly fungi. COC inhibits saprobic and
rhizosphere fungal diversity (e.g., lowest alpha
diversity  in plantation
rhizospheres) (Mallano et al., 2023) and impairing
nutrient cycling, fertility, and ecosystem resilience
(Eijsackers et al., 2005; Ferreira et al., 2014,
Keiblinger et al., 2018; Wang et al., 2018; Lasota et
al., 2019; Golubeva et al., 2020; Marini et al., 2024).
Regular monitoring is essential to sustain optimal

fungicide-treated tea

soil copper levels and mitigate these risks in COC-
treated farmlands.
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Figure 2: Concentration of COC in Northern Kerala analysed using AAS
Table 1. Concentration of COC in soil samples using titrimetry
Sampling Day
District Sampling site Day 15 Day 30
Control” COC applied” Control” COC applied”
Ukkinadka 0.11+0.01 92.00+1.02 0.14+0.02 81.00+0.86
Choyamkode 0.23+0.09 91.00£0.03 0.18+0.05 89.01+0.73
Kasaragod
Rajapuram 0.32+0.02 103.00+0.91 0.29+0.06 83.00+0.66
Periye 0.08+0.01 101.00+1.05 0.09+0.05 99.01+0.23
Ezhilode 0.16+0.01 86.00£1.20 0.13+0.01 79.00£1.02
Kannur Chavassery 0.18+0.01 90.00£1.03 0.15+0.02 88.00+0.98
Kuttur 0.32+0.03 99.00+0.92 0.28+0.02 78.00+0.83
Ulikkal 0.20+0.01 105.00+0.83 0.12+0.02 94.00+0.69
Vilangad 0.17+0.03 71.00+0.01 0.12+0.01 60.18+0.55
. Mukkam 0.09+0.01 70.08+0.03 0.06+0.03 59.10+0.40
Kozhikode
Naduvannur 0.39+0.02 72.00£0.05 0.32+£0.01 61.00+0.36
Koorachundu 0.10+0.01 98.00£1.05 0.08+0.01 86.00+1.03
Koolivayal 0.28+0.09 132.00+1.10 0.27£0.01 71.00+0.92
Vaduvanchal 0.12+0.03 109.00+0.03 0.11+0.02 73.00+0.80
Wayanad
Vythiri 0.37+0.12 80.00+0.23 0.32+0.03 67.00+£1.03
Moolankavu 0.26+0.10 79.50+0.18 0.24+0.02 75.00£0.03
"meanz=SE of concentration of COC in ppm
CONCLUSION increases, but AAS consistently offered higher
sensitivity, better precision, and more dependable
This research reveals that applying copper quantification of copper residues. Although copper

oxychloride (COC) significantly raises copper levels
in agricultural soils, with concentrations greatly
surpassing those in untreated areas across all four
districts studied. Both titration and atomic absorption
spectroscopy (AAS) successfully identified these

levels decreased by 15-30% between the 15" and
30™ days post-application, the concentrations in
treated soils remained notably high, indicating the
persistence of COC in the environment. These results
highlight the importance of regularly monitoring
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copper contamination in plantation soils, especially
in regions with frequent fungicide use. Titration is a
practical,  cost-effective = method for initial
assessments, while AAS is recommended for
regulatory, research, and long-term environmental
studies. Overall, responsible management of COC
application is crucial to protect soil quality, microbial
diversity, crop productivity, and the broader
ecosystem's health.
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