

## EXISTING PRODUCTION PATTERNS AMONG THE MAIZE GROWERS

P.K. Netam\*, Basanti Netam and Virendra Kumar Painkra

<sup>1</sup>Department of Agricultural Extension CARS, Kanker, IGKV, Raipur, Chhattisgarh

<sup>2</sup>Department of Senior Agriculture Development Officer, Dhamtari, Chhattisgarh

<sup>3</sup>Department of Agricultural Extension CoA, IGKV, Raipur, Chhattisgarh

Email: [pknetam49@gmail.com](mailto:pknetam49@gmail.com)

Received-01.04.2020, Revised-22.04.2020

**Abstracts:** This investigation was carried out in three district of Bastar plateau of Chhattisgarh State to assess the level of existing production pattern among the respondents. 270 farmers were considered as respondents for this study. Respondents were interviewed through personal interview. Collected data were analyzed with the help of suitable statistical methods. The analysis of the results showed that major crop prevailed in *Kharif* season among different respondents was rice followed by maize, while predominant crop in *Rabi* season was maize covering 64.44 percent area.

**Keywords:** Production pattern, Area, Productivity, Economic assessment

### INTRODUCTION

Maize (*Zea mays* L.) is one of the most important cereal crops in the world and has the highest production among all the cereals. It is a miracle crop, it has very high yield potential, there is no cereal on the earth which has so immense potentiality and that is why it is called 'queen of cereal'. Besides, maize has many types like normal yellow, white grain, sweet corn, baby corn, pop corn, waxy corn, high amylase corn, high oil corn, quality protein maize, etc. Maize is the most important crop in the world after wheat and rice (Verheys, Undated). It is an important staple food in many countries and is also used as animal feed and many industrial applications. Maize is 3<sup>rd</sup> major crop in India after rice and wheat (Cox, R., 1956 & Reddy *et. al.* 2013). Maize is important cereal crop which provides food, feed, fodder and serves as a source of basic raw material for a number of industrial products viz, starch, protein, oil, food sweeteners, alcoholic beverages, cosmetics, bio-fuel etc, it is cultivated over 8.12 million hectare area with an annual production of 19.77 million tones and an average productivity of 2,435 kg ha<sup>-1</sup> (Langade *et. al.* 2013). Maize is the third most important food grain in India after wheat and rice. In India, about 28% of maize produced is used for food purpose, 11% as livestock feed, 48% as poultry feed, 12% in wet milling industry (for example starch and oil production) and 1% as seed (AICRP on Maize, 2007). Maize crop in the state has an area of 123430 ha with the production 254134 MT (C.G. Agriculture Statistic Report 2014). The area and production of Maize crop in Kanker district was 11511 ha and 25705 MT respectively, area of maize crop in Kondagaon district is 13586 ha with production of 31831 MT while the coverage of maize in Bastar district is 9560 ha with the production of 22398 (C.G. Ag. statistic Report 2014). The existing production pattern indicate the used to pattern which is now present in

operation is made according to the exact dimension of particular style with allowance. The present study was undertaken with specific objectives to assess the existing production pattern of maize of the maize growers of Bastar plateau of Chhattisgarh.

### MATERIALS AND METHODS

The present study was carried out in Bastar plateau of Chhattisgarh State. Three districts in the zone *i.e.* Kanker, Kondagaon and Bastar were undertaken for the study. Two blocks from each of the selected district Block Antagarh and Koylibeda in Kanker District, Keshkal and Baderajpur in Kondagaon, Bastar and Bakawand in Bastar District. Each selected block 3 villages *viz.* Irrabodi, Amagaon, Godri, in Antagarh Block, Chotekapsi, Kodosalhebhat, Manegaon, in Koylibeda Block, Cherbeda, Toraibeda, Amoda in Keshkal Block, Baderajpur, Toraipara, Khargaon(Manduki) in Baderajpur Block, Ikchapur, Bagmohlai, Dubeumargaon in Bastar Block, Belputi, Khotlapal and Mangnar in Bakawand Block were selected and from each selected village, 15 farmers were selected randomly. In this way total two hundred seventy respondents were selected to response as per the interview schedule designed for the study. Collected data were analyzed by the help of various statistical tools *i.e.* frequency, percentage, mean, standard deviation, correlation and regression, *etc.* In this study, the existing production pattern indicate the used to pattern which is now present in operation is made according to the exact dimension of particular style with allowance.

### RESULTS AND DISCUSSION

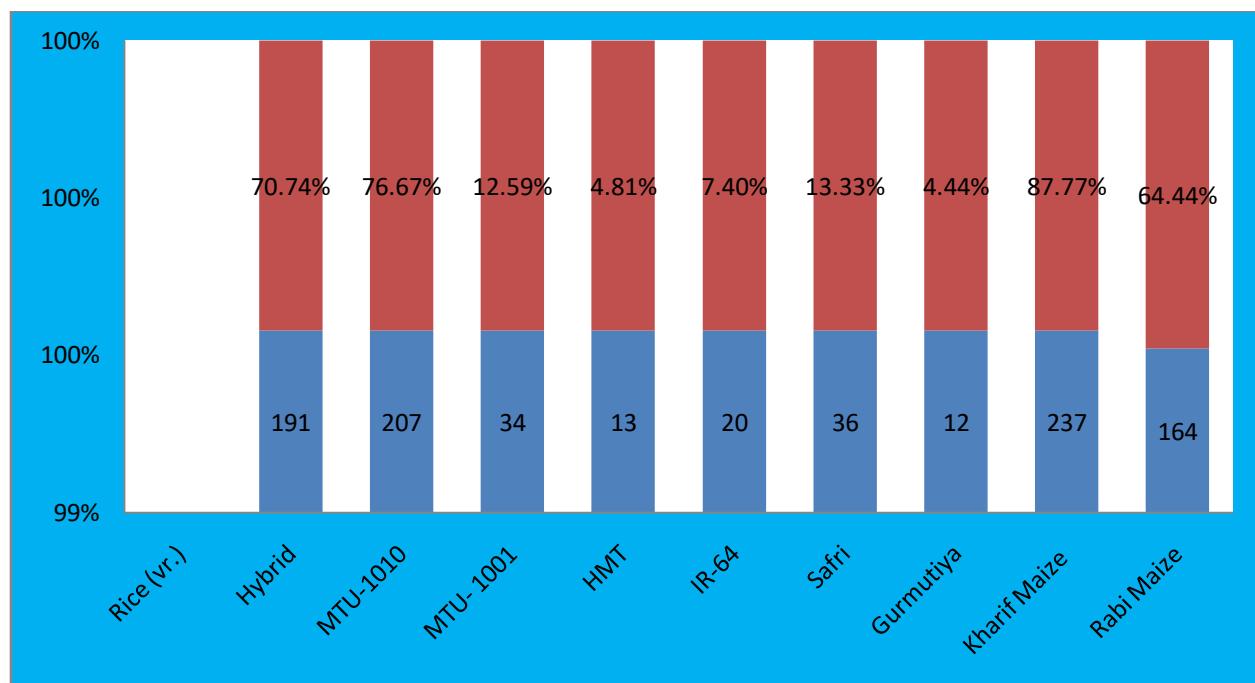
The result and discussion of the present study have been summarized on the basis of response of

\*Corresponding Author

respondents regarding to area, productivity and economics of the major *Kharif* and *Rabi* crops prevailing among the respondents are represented in the Table No.1. Major crop prevailed in *Kharif* season among different respondents was rice followed by maize, while predominant crop in *Rabi* season was maize covering 64.44 percent area while, it covered 87.77 percent area covered in *Kharif* season. The major variety of *Kharif* rice taken up by the respondents was hybrid, MTU-1010, MTU-1001 and IR-64. Irrigated area under *Kharif* maize was 48 ha. while 129ha. area was unirrigated. The total irrigated area under *Rabi* maize among different respondents was 187.2 ha. Average productivity of *Kharif* maize under irrigated condition was 47qha<sup>-1</sup> whereas, it is lower in unirrigated condition and found 38 qha<sup>-1</sup> comparatively higher productivity of *Rabi* maize was found as 58 qha<sup>-1</sup>. Average productivity of rice hybrid under irrigated condition was 46qha<sup>-1</sup> whereas, it is 44 qha<sup>-1</sup> under unirrigated condition. Average productivity of rice variety viz MTU-1010, MTU-1001 and IR-64 under irrigated condition was 46, 32, 25 and 29 qha<sup>-1</sup> respectively,

whereas under unirrigated condition it gave productivity of 44, 31, 24 and 27 qha<sup>-1</sup>.

Average cost of cultivation of rice varieties viz. Hybrid, MTU-1010, MTU-1001 and IR-64 was Rs.33000, Rs.27000, Rs.26000 and Rs.27000 per hectare under irrigated condition which was almost same or slightly lower under unirrigated condition. Gross return among the rice variety was maximum in rice hybrids followed by MTU-1010, IR-64 and MTU-1001. Net return (Rs.ha<sup>-1</sup>) also followed the same trends. Among the different rice variety maximum benefit: cost ratio was obtained with rice hybrid (1.81) followed by MTU-1010(1.54), IR-64(1.39) and MTU-1001(1.25). The highest net return of Rs. 51,170 ha<sup>-1</sup> in *Rabi* maize whereas, the net return in *Kharif* maize under irrigated condition was Rs.36155ha<sup>-1</sup> and under unirrigated condition it was Rs.28870ha<sup>-1</sup>. The maximum benefit cost ratio of 2.82 was obtained in *Rabi* maize compared to 2.19 in *Kharif* season under irrigated condition. Under unirrigated condition the B:C ratio in *Kharif* maize was 1.57.


**Table 1.** Area, Productivity and economics assessment of major crops among the respondents during *Kharif* and *Rabi* season

| Season / Crop            | No  | percent | Area (ha) |      | AC (Rs.000/ha.) |    | AP (Q./ha) |    | GR (Rs./ha.) |       | Net return (Rs./ha.) |       | B:CRatio |      |
|--------------------------|-----|---------|-----------|------|-----------------|----|------------|----|--------------|-------|----------------------|-------|----------|------|
|                          |     |         | I         | UI   | I               | UI | I          | UI | I            | UI    | I                    | UI    | I        | UI   |
| <b><i>Kharif</i></b>     |     |         |           |      |                 |    |            |    |              |       |                      |       |          |      |
| Rice (vr.)               |     |         |           |      |                 |    |            |    |              |       |                      |       |          |      |
| Hybrid                   | 191 | 70.74   | 100       | 38   | 33              | 32 | 46         | 44 | 59800        | 57200 | 26800                | 25200 | 1.81     | 1.78 |
| MTU-1010                 | 207 | 76.67   | 51        | 85   | 27              | 27 | 32         | 31 | 41600        | 40300 | 14600                | 13300 | 1.54     | 1.49 |
| MTU- 1001                | 34  | 12.59   | 4.4       | 24   | 26              | 26 | 25         | 24 | 32500        | 31200 | 6500                 | 5200  | 1.25     | 1.20 |
| HMT                      | 13  | 4.81    | 2.8       | 7.6  | 29              | 28 | 31         | 27 | 40300        | 35100 | 11300                | 9100  | 1.38     | 1.25 |
| IR-64                    | 20  | 7.40    | 2.8       | 14.8 | 27              | 26 | 29         | 27 | 37700        | 35100 | 10700                | 9100  | 1.39     | 1.35 |
| Safri                    | 36  | 13.33   | 3.6       | 24   | 26              | 25 | 25         | 24 | 32500        | 31200 | 6500                 | 6200  | 1.25     | 1.24 |
| Gurmutiya                | 12  | 4.44    | 2         | 6.4  | 25              | 25 | 21         | 21 | 27300        | 27300 | 2300                 | 2300  | 1.09     | 1.09 |
| Maize                    | 237 | 87.77   | 48        | 129  | 28              | 23 | 47         | 38 | 64155        | 51870 | 36155                | 28870 | 2.19     | 1.57 |
| <b><i>Rabi</i> Maize</b> | 164 | 64.44   | 187.2     | -    | 28              | -  | 58         | -  | 79170        |       | 51170                | -     | 2.82     | -    |

\*Data are based on multiple responses

Note: Data are based on multiple responses, I- irrigated, UI-un irrigated, AC-average cost, AP- average production,

GR- gross return, NR-net return, B: C- benefit: cost, vr- variety



**Fig. 1.** Distribution of the respondents on the basis of their Major crops

## CONCLUSION

From the above research findings it can be concluded that Major crop prevailed in *Kharif* season among different respondents was rice followed by maize, while predominant crop in *Rabi* season was maize covering 64.44 percent area.

## REFERENCES

**Chhattisgarh** (2014). Annual statistics report.

**CIMMYT** (2005). Maize in India: production systems, constraints, and research priorities.

**FAOSTAT** (2012). Statistical databases and data sets of the food and agriculture organization of the United Nations.

**FARA** (2009). Pattern of change in maize production in Africa: implication for policy development. Ministerial policy brief services, No.3 December 2009 Accra, Ghana: forum for Agricultural Research in Africa (FARA).

**Gecho, Yishak and Punjabi, N.K.** (2011). Determination of adoption of improved Maize technology in Damot Gale, Wolaita, Ethiopia. *Raj. J. Ext. Edu.*, 19: 1-9.

**Gupta, Km. Saroj and Gyanpur, S.R.N.** (2012). Sustainability of scientific maize cultivation practice in Uttar Pradesh, India. *Journal of Agricultural Technology*, 8 (3): 1089-1098.

**Kumari, Sunita, Sharma, F.L. and Nidhi** (2017). Study of profile characteristics of wheat and maize growers in Udaipur District of Rajasthan. *IMPACT: International Journal of Research in Applied, Natural and Social Sciences*, 5(2): 1-12.

**Langade, D. M., Shahi, J.P., Agrawal, V. K. and Sharma, A.** (2013). Maize as emerging source of oil in india: an overview. *Maydica*, 58(3/4): 224-230.

**Nyangena, Wilfred and Juma, Ogada Maurice** (2014). Impact of Improved Farm Technologies on Yields: The case of improved Maize Varieties and Inorganic fertilizer in Kenya. *Environment for Development*.

**R. Cox** (1956). Control of helminthosporium turcicum blight disease of sweet corn in South Florida. *Phytopathology*, 5: 68-70.

**Singha, K. and Chakravorty, A.** (2013). Crop diversification in India: a study of maize cultivation in Karnataka. *Scientific Journal of Review*, 2(1): 1-10.

**Wokabi, S. M.** (1998). Sustainability of maize production in Kenya. *Kenya Agricultural Research Institute*, Nairobi, Kenya. p. 2.

