

## PULP CONCENTRATION AND STORAGE CONDITIONS AFFECT LEVEL OF ASCORBIC ACID AND ORGANOLEPTIC PROPERTIES OF GUAVA NECTAR

Manohar Lal Meghwal<sup>1\*</sup>, S.R. Dalal<sup>1</sup> and Nirmal Kumar Meena<sup>2</sup>

<sup>1</sup>Department of Horticulture, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola- 444 104, Maharashtra

<sup>2</sup>Division of Food Science & Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi-110012  
Email: manoharmeghwal77@gmail.com

Received-21.01.2017, Revised-04.02.2017

**Abstract:** An experiment was carried out during the year 2015-16 in Post Harvest Technology Laboratory, Section of Horticulture, College of Agriculture, Dr. Panjabrao Deshmukh Krishi Vidyapeeth Akola. Experiment was conducted by using Lalit cv. of Guava under FCRD statistical design having two factors viz. Factor A and factor B. Factor A consists of five different pulp concentrations viz. 14% guava pulp, 16% guava pulp, 18% guava pulp, 20% guava pulp, 22% guava pulp and factor B consists of storage conditions viz. refrigerated and ambient conditions. Guava nectar prepared from 18% pulp concentration showed minimum changes in ascorbic acid and organoleptic properties viz. colour, taste, flavour and overall acceptability under both refrigerated and ambient storage condition.

**Keywords:** Guava, Nectar, Pulp concentration, Ascorbic acid, Organoleptic quality

### INTRODUCTION

Guava (*Psidium guajava* L.) is most important fruit crop of India known as 'Poor man's apple of tropics (Kamath *et al.*, 2008). It is originated from tropical America but in this sub-continent, guava has been in cultivation since early 17<sup>th</sup> century (Mitra and Bose, 1990). Guava has sweet aroma and a pleasant sour- sweet taste. Guava is rich source of fiber and ascorbic acid. It is normally consumed fresh as a dessert fruit or processed into puree, juice, concentrate, jam, jelly, nectar or syrup (Jagtiani *et al.*, 1988).

Guava pulp contains plenty of minerals like phosphorus (23 - 37 mg/100 g), calcium (14 - 30 mg/100 g), iron (0.6 - 1.4 mg/100 g) and vitamins like niacin, thiamine, riboflavin and carotene (Mahendran, 2010). Storage life of guava is very less due to its high physiological processes. Postharvest losses are very high during storage and lack of cold stores also triggers this loss. During market glut, price of fresh produce goes down so farmers fetch very less price. Processing is the best way to minimizing these losses. Nectar is non carbonated drink and contains about 20 per cent fruit juice/pulp and 15 per cent total soluble solids and about 0.3 per cent titratable acidity. It is excellent source of phytonutrients and mostly used as health drink (Khurdiya and Sagar, 1991). Quality and shelf life of nectar is affected by different concentration of pulp as well as storage conditions. Different biochemical changes takes place in nectar during storage. As Lalit is red pulp colour cultivar has great demand in market due to its suitability for processing. A limited research work has been carried out on effect of pulp and storage on nectar of Lalit cultivar with respect to ascorbic acid and organoleptical changes. So

objective of our study was to elucidate the effect of pulp concentration and storage condition on ascorbic acid and organoleptic properties of nectar.

### MATERIAL AND METHOD

The present investigation was carried out in Post Harvest Technology Laboratory Section of Horticulture, College of Agriculture, Dr. P.D.K.V. Akola during the year 2015-16 with factorial randomized design. For the experimentation, fully ripe, uniform size guava fruits were selected. The fruits were cut into pieces with stainless steel knife. Pulp from the fruits was obtained by homogenizing the pieces into homogenizer with addition of small quantity of water. The seeds and pulp were separated by passing juice through 60 mm stainless steel sieve. Thus extracted pulp was used for preparation of guava nectar with following recipe.

Guava pulp : As per treatment  
Sugar : 600 g per kg of pulp  
Sodium Benzoate: 300 ppm

Thus extracted pulp was used for preparation of nectar with following treatments:

#### Treatments details

P<sub>1</sub> - 14% Guava pulp  
P<sub>2</sub> - 16% Guava pulp  
P<sub>3</sub> - 18% Guava pulp  
P<sub>4</sub> - 20% Guava pulp  
P<sub>5</sub> - 22% Guava pulp

#### Storage conditions

S<sub>1</sub> - Refrigerated storage (7°C± 1°C)  
S<sub>2</sub> - Ambient storage (33°C± 1°C)  
Guava nectar will be filled into the pre-sterilized bottles of 300 ml capacity and sealed air tight using crown corks and stored as per treatment for further observations.

\*Corresponding Author

### Biochemical analysis

The processed product was stored under two different storage viz. refrigerated condition and ambient condition. Biochemical analysis carried out at interval of 30 days up to 120 days under refrigerated condition and up to 90 days under ambient condition.

Ascorbic acid content was determined by 2, 6-dichloroindophenol titrimetric method. Results of ascorbic acid were presented in mg/100ml of juice. Organoleptic properties viz- colour, taste, flavour and overall acceptability were evaluated with 10 trained panelist based on 9 point hedonic scale (Like extremely: 9, Like very much: 8, Dislike moderately: 3, Like moderately: 7, Like slightly: 6, Neither like nor dislike: 5, Dislike slightly: 4, Dislike very much: 2, Dislike extremely: 1) with maximum score considered as the best (Ranganna, 1986).

### Statistical analysis

The experiment was laid out for analysis of variance by using Factorial Completely Randomized Design (FCRD) with 3 replications (Panse and Sukhantme, 1985).

## RESULT AND DISCUSSION

### Ascorbic acid (mg/100 ml juice)

Effect of pulp along with storage conditions was significantly affected ascorbic acid content and it was showed decreasing pattern in all treatments (Table 1). Treatment combination  $P_3S_1$  exhibited optimum results among all treatments and storage combinations. Minimum loss in ascorbic acid (0.33mg/100ml) on 120<sup>th</sup> day of refrigerated storage was recorded in treatment  $P_3S_1$ . Under ambient storage minimum reduction in ascorbic acid (0.40mg/100ml) was exhibited by  $P_3S_2$ . The decreasing pattern of ascorbic acid in both storage conditions might be due to exposure of nectar to light and oxygen. This exposure triggers oxidation of ascorbic acid into dehydroascorbic acid (Murari and Verma, 1989; Chakraborty *et al.*, 1991; Reddy and Chikkasubbanna, 2009).

### Colour score

Likewise ascorbic acid, colour also showed decreasing trends in all treatments in both storage conditions (Table 2). After 120 days of cold storage, maximum colour score (8.32) was recorded in  $P_3S_1$  whereas it was highest (8.30) in  $P_3S_2$  under ambient condition. It is well known that millard reaction and caramelization change the colour of food products. Reduction in colouring compounds in nectar might

be due to reaction of phenolic compounds with enzymes which lead discoloration (Murari and Verma, 1989; Kalra and Tandon, 1984).

### Taste score

The data exhibited significant differences in respect of taste score of guava nectar depicted in Table 3. Maximum score for taste (8.71- like extremely) on 120<sup>th</sup> day of observation under refrigerated condition was recorded by treatment combination  $P_3S_1$  whereas it was highest in  $P_3S_2$  under ambient storage. Balanced ratio of recipes, TSS, acidity, processed condition and storage conditions affect quality and taste of final product. Maximum taste score in  $P_3S_1$  and  $P_3S_2$  might be due to proper ratio of pulp, TSS and acidity (Mall and Tondon, 2007; Pandey, 2004).

### Flavour score

The data exhibited significant differences in respect of flavour score of guava nectar during storage period (Table 4). Maximum score for flavour (8.71 – like extremely) under refrigerated conditions was recorded in treatment combination  $P_3S_1$  (18% Guava pulp + stored at refrigerated condition) whereas it was minimum (7.07 – like moderately) in treatment combination  $P_1S_1$  (14% Guava pulp + stored at refrigerated condition).

Among the ambient storage condition of guava nectar on 90<sup>th</sup> day, significantly maximum score for flavour (8.69- like extremely) was recorded in treatment combinations  $P_3S_2$  (18% Guava pulp + stored at ambient condition) (Murari and Verma, 1989; Chakraborty *et al.*, 1991).

### Overall acceptability

From the result it was observed that, there was progressive decrease in overall acceptability of guava nectar during storage (Table 5). The storage temperature had significant effect on overall acceptability of guava nectar in both ambient and refrigerated conditions. The guava nectar stored at refrigerated storage conditions with 18 per cent pulp had highest overall acceptability score (8.33) on 120<sup>th</sup> day of storage. Under ambient condition of storage also acceptability score was maximum (8.33) in treatment  $P_3S_2$ . It is reported that, phalsa beverage was acceptable up to 120 days in cold temperature but acceptability score decreased continuously during storage period (Waskar and Khurdiya, 1987). Kotecha and Kadam (2003) noted that, there was gradual decrease in the overall acceptability score of syrup stored at room temperature during the storage period of 180 days (Kumar and Manimegalai, 2001).

**Table 1.** Effect of pulp concentrations and storage conditions on ascorbic acid of guava nectar

| Treatments                        | Ascorbic acid (mg/100ml) |       |       |       |                                         |       |                                          |
|-----------------------------------|--------------------------|-------|-------|-------|-----------------------------------------|-------|------------------------------------------|
|                                   | Storage period (Days)    |       |       |       |                                         |       |                                          |
|                                   | Initial                  | 30    | 60    | 90    | Decrease in ascorbic acid after 90 days | 120   | Decrease in ascorbic acid after 120 days |
| <b>P<sub>1</sub>S<sub>1</sub></b> | 15.62                    | 15.53 | 15.44 | 15.25 | 0.37                                    | 15.07 | 0.55                                     |
| <b>P<sub>2</sub>S<sub>1</sub></b> | 18.29                    | 18.22 | 18.14 | 17.99 | 0.29                                    | 17.84 | 0.45                                     |
| <b>P<sub>3</sub>S<sub>1</sub></b> | 22.23                    | 22.17 | 22.11 | 22.01 | 0.22                                    | 21.89 | 0.33                                     |
| <b>P<sub>4</sub>S<sub>1</sub></b> | 23.54                    | 23.47 | 23.40 | 23.28 | 0.26                                    | 23.15 | 0.39                                     |
| <b>P<sub>5</sub>S<sub>1</sub></b> | 27.42                    | 27.35 | 27.28 | 27.13 | 0.29                                    | 26.99 | 0.43                                     |
| <b>P<sub>1</sub>S<sub>2</sub></b> | 15.62                    | 15.49 | 15.35 | 15.01 | 0.61                                    | *     | *                                        |
| <b>P<sub>2</sub>S<sub>2</sub></b> | 18.29                    | 18.18 | 18.05 | 17.75 | 0.54                                    | *     | *                                        |
| <b>P<sub>3</sub>S<sub>2</sub></b> | 22.23                    | 22.12 | 22.02 | 21.82 | 0.40                                    | *     | *                                        |
| <b>P<sub>4</sub>S<sub>2</sub></b> | 23.54                    | 23.40 | 23.30 | 23.06 | 0.48                                    | *     | *                                        |
| <b>P<sub>5</sub>S<sub>2</sub></b> | 27.42                    | 27.30 | 27.18 | 26.92 | 0.51                                    | *     | *                                        |
| <b>F test</b>                     | Sig                      | Sig   | Sig   | Sig   | Sig                                     | -     | -                                        |
| <b>SE(m)±</b>                     | 0.051                    | 0.059 | 0.066 | 0.079 | 0.028                                   | -     | -                                        |
| <b>CD at 5 %</b>                  | 0.149                    | 0.173 | 0.191 | 0.231 | 0.082                                   | -     | -                                        |

Each value is presented as mean of three replication (n=3)

**Table 2.** Effect of pulp concentrations and storage conditions on colour score of guava nectar

| Treatments                        | Colour score          |       |       |       |                                        |      |                                         |
|-----------------------------------|-----------------------|-------|-------|-------|----------------------------------------|------|-----------------------------------------|
|                                   | Storage period (Days) |       |       |       |                                        |      |                                         |
|                                   | Initial               | 30    | 60    | 90    | Decrease in colour score after 90 days | 120  | Decrease in colour score after 120 days |
| <b>P<sub>1</sub>S<sub>1</sub></b> | 6.70                  | 6.61  | 6.55  | 6.41  | 0.29                                   | 6.24 | 0.46                                    |
| <b>P<sub>2</sub>S<sub>1</sub></b> | 7.50                  | 7.43  | 7.36  | 7.22  | 0.28                                   | 7.15 | 0.35                                    |
| <b>P<sub>3</sub>S<sub>1</sub></b> | 8.53                  | 8.49  | 8.45  | 8.39  | 0.14                                   | 8.32 | 0.22                                    |
| <b>P<sub>4</sub>S<sub>1</sub></b> | 8.00                  | 7.96  | 7.90  | 7.80  | 0.20                                   | 7.70 | 0.30                                    |
| <b>P<sub>5</sub>S<sub>1</sub></b> | 7.80                  | 7.75  | 7.68  | 7.57  | 0.23                                   | 7.44 | 0.36                                    |
| <b>P<sub>1</sub>S<sub>2</sub></b> | 6.70                  | 6.59  | 6.51  | 6.33  | 0.37                                   | *    | *                                       |
| <b>P<sub>2</sub>S<sub>2</sub></b> | 7.50                  | 7.41  | 7.33  | 7.17  | 0.33                                   | *    | *                                       |
| <b>P<sub>3</sub>S<sub>2</sub></b> | 8.53                  | 8.47  | 8.41  | 8.30  | 0.23                                   | *    | *                                       |
| <b>P<sub>4</sub>S<sub>2</sub></b> | 8.00                  | 7.93  | 7.86  | 7.71  | 0.29                                   | *    | *                                       |
| <b>P<sub>5</sub>S<sub>2</sub></b> | 7.80                  | 7.71  | 7.64  | 7.48  | 0.32                                   | *    | *                                       |
| <b>F test</b>                     | Sig                   | Sig   | Sig   | Sig   | Sig                                    | -    | -                                       |
| <b>SE(m)±</b>                     | 0.114                 | 0.107 | 0.103 | 0.100 | 0.014                                  | -    | -                                       |
| <b>CD at 5 %</b>                  | 0.331                 | 0.312 | 0.300 | 0.291 | 0.040                                  | -    | -                                       |

Each value is presented as mean of three replication (n=3)

**Table 3.** Effect of pulp concentrations and storage conditions on taste score of guava nectar

| Treatments                        | Taste score           |       |       |       |                                       |      |                                        |
|-----------------------------------|-----------------------|-------|-------|-------|---------------------------------------|------|----------------------------------------|
|                                   | Storage period (Days) |       |       |       |                                       |      |                                        |
|                                   | Initial               | 30    | 60    | 90    | Decrease in Taste score after 90 days | 120  | Decrease in Taste score after 120 days |
| <b>P<sub>1</sub>S<sub>1</sub></b> | 6.47                  | 6.40  | 6.33  | 6.19  | 0.27                                  | 6.07 | 0.40                                   |
| <b>P<sub>2</sub>S<sub>1</sub></b> | 6.80                  | 6.74  | 6.69  | 6.55  | 0.25                                  | 6.45 | 0.35                                   |
| <b>P<sub>3</sub>S<sub>1</sub></b> | 8.23                  | 8.19  | 8.14  | 8.06  | 0.17                                  | 7.98 | 0.26                                   |
| <b>P<sub>4</sub>S<sub>1</sub></b> | 7.85                  | 7.79  | 7.74  | 7.63  | 0.21                                  | 7.55 | 0.30                                   |
| <b>P<sub>5</sub>S<sub>1</sub></b> | 7.24                  | 7.18  | 7.12  | 7.02  | 0.23                                  | 6.90 | 0.34                                   |
| <b>P<sub>1</sub>S<sub>2</sub></b> | 6.47                  | 6.38  | 6.27  | 6.07  | 0.40                                  | *    | *                                      |
| <b>P<sub>2</sub>S<sub>2</sub></b> | 6.80                  | 6.73  | 6.64  | 6.45  | 0.35                                  | *    | *                                      |
| <b>P<sub>3</sub>S<sub>2</sub></b> | 8.23                  | 8.19  | 8.11  | 8.00  | 0.23                                  | *    | *                                      |
| <b>P<sub>4</sub>S<sub>2</sub></b> | 7.85                  | 7.78  | 7.71  | 7.55  | 0.30                                  | *    | *                                      |
| <b>P<sub>5</sub>S<sub>2</sub></b> | 7.24                  | 7.17  | 7.09  | 6.92  | 0.32                                  | *    | *                                      |
| <b>F test</b>                     | Sig                   | Sig   | Sig   | Sig   | Sig                                   | -    | -                                      |
| <b>SE(m)±</b>                     | 0.146                 | 0.148 | 0.149 | 0.147 | 0.003                                 | -    | -                                      |
| <b>CD at 5 %</b>                  | 0.427                 | 0.432 | 0.433 | 0.429 | 0.010                                 | -    | -                                      |

Each value is presented as mean of three replication (n=3)

**Table 4.** Effect of pulp concentrations and storage conditions on flavour score of guava nectar

| Interactions                      | Flavour score         |      |      |      |                                         |      |                                    |
|-----------------------------------|-----------------------|------|------|------|-----------------------------------------|------|------------------------------------|
|                                   | Storage period (Days) |      |      |      |                                         |      |                                    |
|                                   | Initial               | 30   | 60   | 90   | Decrease in flavour score after 90 days | 120  | Decrease in flavour score 120 days |
| <b>P<sub>1</sub>S<sub>1</sub></b> | 7.46                  | 7.38 | 7.31 | 7.12 | 0.34                                    | 7.07 | 0.39                               |
| <b>P<sub>2</sub>S<sub>1</sub></b> | 7.63                  | 7.57 | 7.50 | 7.31 | 0.32                                    | 7.27 | 0.36                               |
| <b>P<sub>3</sub>S<sub>1</sub></b> | 8.95                  | 8.90 | 8.86 | 8.79 | 0.15                                    | 8.71 | 0.24                               |
| <b>P<sub>4</sub>S<sub>1</sub></b> | 8.60                  | 8.54 | 8.50 | 8.41 | 0.19                                    | 8.30 | 0.30                               |
| <b>P<sub>5</sub>S<sub>1</sub></b> | 7.96                  | 7.89 | 7.84 | 7.73 | 0.23                                    | 7.61 | 0.35                               |
| <b>P<sub>1</sub>S<sub>2</sub></b> | 7.46                  | 7.35 | 7.26 | 7.06 | 0.40                                    | *    | *                                  |
| <b>P<sub>2</sub>S<sub>2</sub></b> | 7.63                  | 7.52 | 7.45 | 7.26 | 0.37                                    | *    | *                                  |
| <b>P<sub>3</sub>S<sub>2</sub></b> | 8.95                  | 8.87 | 8.80 | 8.69 | 0.26                                    | *    | *                                  |
| <b>P<sub>4</sub>S<sub>2</sub></b> | 8.60                  | 8.51 | 8.45 | 8.29 | 0.31                                    | *    | *                                  |

|                                   |       |       |       |       |       |   |   |
|-----------------------------------|-------|-------|-------|-------|-------|---|---|
| <b>P<sub>5</sub>S<sub>2</sub></b> | 7.96  | 7.85  | 7.77  | 7.58  | 0.38  | * | * |
| <b>F test</b>                     | Sig   | Sig   | Sig   | Sig   | Sig   | - | - |
| <b>SE(m)±</b>                     | 0.066 | 0.058 | 0.053 | 0.053 | 0.013 | - | - |
| <b>CD at 5 %</b>                  | 0.193 | 0.171 | 0.156 | 0.155 | 0.039 | - | - |

Each value is presented as mean of three replication (n=3)

**Table 5.** Effect of pulp concentrations and storage conditions on overall acceptability score of guava nectar

| Treatments                        | Overall acceptability score |       |       |       |                                                       |      |                                                        |
|-----------------------------------|-----------------------------|-------|-------|-------|-------------------------------------------------------|------|--------------------------------------------------------|
|                                   | Storage period (Days)       |       |       |       |                                                       |      |                                                        |
|                                   | Initial                     | 30    | 60    | 90    | Decrease in overall acceptability score after 90 days | 120  | Decrease in overall acceptability score after 120 days |
| <b>P<sub>1</sub>S<sub>1</sub></b> | 6.88                        | 6.82  | 6.73  | 6.57  | 0.30                                                  | 6.46 | 0.42                                                   |
| <b>P<sub>2</sub>S<sub>1</sub></b> | 7.31                        | 7.27  | 7.18  | 7.03  | 0.28                                                  | 6.95 | 0.36                                                   |
| <b>P<sub>3</sub>S<sub>1</sub></b> | 8.57                        | 8.54  | 8.49  | 8.42  | 0.16                                                  | 8.33 | 0.24                                                   |
| <b>P<sub>4</sub>S<sub>1</sub></b> | 8.15                        | 8.12  | 8.05  | 7.95  | 0.20                                                  | 7.85 | 0.30                                                   |
| <b>P<sub>5</sub>S<sub>1</sub></b> | 7.67                        | 7.63  | 7.55  | 7.44  | 0.23                                                  | 7.32 | 0.35                                                   |
| <b>P<sub>1</sub>S<sub>2</sub></b> | 6.88                        | 6.80  | 6.68  | 6.49  | 0.39                                                  | *    | *                                                      |
| <b>P<sub>2</sub>S<sub>2</sub></b> | 7.31                        | 7.24  | 7.14  | 6.96  | 0.35                                                  | *    | *                                                      |
| <b>P<sub>3</sub>S<sub>2</sub></b> | 8.57                        | 8.52  | 8.44  | 8.33  | 0.24                                                  | *    | *                                                      |
| <b>P<sub>4</sub>S<sub>2</sub></b> | 8.15                        | 8.10  | 8.01  | 7.85  | 0.30                                                  | *    | *                                                      |
| <b>P<sub>5</sub>S<sub>2</sub></b> | 7.67                        | 7.60  | 7.50  | 7.33  | 0.34                                                  | *    | *                                                      |
| <b>F test</b>                     | NS                          | Sig   | Sig   | Sig   | Sig                                                   | -    | -                                                      |
| <b>SE(m)±</b>                     | 0.072                       | 0.070 | 0.071 | 0.075 | 0.003                                                 | -    | -                                                      |
| <b>CD at 5 %</b>                  | 0.211                       | 0.206 | 0.207 | 0.219 | 0.009                                                 | -    | -                                                      |

Each value is presented as mean of three replication (n=3)

## CONCLUSION

Ascorbic acid and organoleptic properties were significantly affected by pulp quantity as well as storage conditions. Guava nectar prepared from different concentration of pulp showed that pulp concentration of 18% was found best with minimum alteration in ascorbic acid and organoleptic properties under both refrigerated as well ambient conditions. Refrigerated pulp had higher shelf life up to 120<sup>th</sup> days whereas it was 90 days under ambient condition.

## REFERENCES

**Chakraborty, S., Bisht, H.C., Agarwal, M.D., Verma, L.N. and Shukla, I.C.** (1991). Studies on varietal screening of mangoes of Uttar Pradesh for their suitability for production of canned nectar, juice and pulp. Indian Food Packer **55 (5)**: 49-57.

**Jagtiani, J., Chang, H.T. and Sakai, W.S.** (1988). Guava: Tropical Fruit Processing, Academic Press, New York.

**Kalra, S.K. and Tandon, D.K.** (1984) Guava nectars from sulphited pulp and their blends

with mango nectar. Indian Food Packer, **38(1)**: 74-77.

**Kamath, J.V., Rahul, N., Kumar, A.C.K. and Lakshmi, S.M.** (2008). *Psidium guajava* L. A Review. Int. J. Green Pharm. **2**: 9-12.

**Khurdiya, D.S. and Sagar, V.R.** (1991). Note on processing and storage of guava nectar. Indian J. Hort., **48(1)**: 19-21.

**Kotecha, P.M. and Kadam, S.S.** (2003). Preparation of ready-to-serve beverages, syrup and concentrate from tamarind. J. Food Sci. Technol., **40(1)**: 76-79.

**Kumar, R.S. and Manimegalai, G.** (2001). Storage stability of mixed fruit RTS beverages in different storage conditions. Beverage and Food world, **28(2)**: 28-29.

**Mahendran, T.** (2010). Physico-Chemical properties and sensory characteristics of dehydrated guava concentrate: effect of drying method and maltodextrin concentration. Tropic. Agric. Res. Ext. **13(2)**: 48-54.

**Mall, P. and Tondon, D.K.** (2007). Development of guava aonla blended beverage. Acta Hortic., **735**: 555-560.

**Mitra, R.J. and Bose, T.K.** (1990). Tropical and Sub Tropical Fruits. Bose, T.K. and Mitra, S.K. Eds. Naya prakash. Calcutta, India-6. pp. 280-303.

**Murari, K. and Verma, R.A.** (1989) Studies on the effect of varieties and pulp extraction methods on the quality of guava nectar. Indian Food Packer, **43**: 11-15.

**Pandey, A.K.** (2004) Studies about the storage stability of guava beverages. Prog. Hortic., **36(1)**: 142-145.

**Panse, V.G. and Sukhatme, P.V.** (1967). Statistical methods for agricultural workers. ICAR Pub. New Delhi, 369.

**Ranganna, S.** (1986). Hand book of analysis and quality control for fruits and vegetables products. Tata Mc Graw Hill Publishing Co Ltd New Delhi, India.

**Reddy, A.H. and Chikkasubbanna, V.** (2009). Studies on storage behavior of amla syrup, The Asian J. Hortic. **4(1)**: 5-9.

**Waskar, D.P. and Khurdiya, D.S.** (1987). Processing and storage of phalsa beverages, Beverage and Food World, **14 (2)**:7-16.