

## SCREENING OF MICROBIAL CONSORTIA ON SORGHUM CROP UNDER GREEN HOUSE CONDITIONS

Y. Kavya\*, N. Trimurtulu<sup>1</sup>, A. Vijaya Gopal<sup>2</sup>, P. Madhu Vani<sup>3</sup> and N.V.V.S.D. Prasad<sup>4</sup>

*Department of Agriculture Microbiology, APGC, ANGRAU, Lam, Guntur*

<sup>1</sup>*APGC, ANGRAU, Lam, Guntur*

<sup>2</sup>*Department of Agriculture Microbiology, APGC, ANGRAU, Lam, Guntur*

<sup>3</sup>*Department of Soil Science, RARS, Lam, ANGRAU, Guntur.*

<sup>4</sup>*Department of Entomology, RARS, Lam, ANGRAU, Guntur.*

*Email: [kavyayerasi160@gmail.com](mailto:kavyayerasi160@gmail.com)*

*Received-05.05.2019, Revised-24.05.2019*

**Abstract:** Screening of three different plant growth promoting microbial consortia was carried under green house conditions on sorghum (CSV-27). Different plant growth parameters like plant height, shoot weight, root weight, total dry weight and nutrient uptake were estimated during the screening. Microbial population was estimated at different intervals of crop growth. Microbial consortia-3 (*Azotobacter*, *Azospirillum*, P-solubilizer, K-releaser, Zn-solubilizer and PGP isolate) inoculated treatment T<sub>3</sub> performed better and improved all the plant growth parameters like plant height, shoot weight, root weight, total dry weight and nutrient uptake compared to the control and other two microbial consortia inoculated treatments.

**Keywords:** Microbial consortia, *Azotobacter*, *Azospirillum*, P-solubilizer, K-releaser, Zn-solubilizer

### INTRODUCTION

Green revolution brought amazing consequences in food grain production but with insufficient concern for agricultural sustainability. Dependence on chemicals for future agricultural needs would result in further loss in soil health. Plant rhizosphere is a remarkable ecological zone in below ground, where myriad microorganisms colonize in, on, and around the roots of growing plants. Many microorganisms are highly dependent for their survival on preformed substrates exuded by plant roots (Khalid *et al.*, 2006).

Voluminous research work has been carried out on the effect of N<sub>2</sub> fixers, P solubilizers as single and/or consortia on several crops. Simultaneous inoculation with different plant growth promoting rhizobacteria (PGPR) often resulted in increased growth and yield as compared to single inoculation through improved nutrient uptake (Amalraj *et al.*, 2015).

In the present study different microbial consortia were developed for customized solution of soil health related problem including plant growth promoting properties.

### MATERIALS AND METHODS

Pot experiment was conducted to study the effect of developed microbial consortia against host crop under green house conditions.

The pot culture experiment for screening of the microbial consortia was carried out at ARS, Amaravathi.

Viable population of *Azospirillum*, *Azotobacter*, Phosphate Solubilizing Bacteria, Potassium

Releasing Bacteria, Zinc Solubilising Bacteria and PGP isolate were enumerated by the standard serial dilution plate count method (Vlassak *et al.*, 1992).

#### Soil preparation and sowing

Soil was sterilized at 121°C for 15 minutes at 15 lb pressure and about 7 kg of sterilized soil was filled into each pot. CSV-27 variety of sorghum was selected and sown at the rate of 6-8 seeds per pot then thinning was done and only 2 plants per pot were maintained.

#### Treatments

T<sub>1</sub>: Control

T<sub>2</sub>: Microbial consortium 1 (*Azotobacter*, P-solubilizer, K-releaser, Zn-solubilizer and PGP isolate)

T<sub>3</sub>: Microbial consortium 2 (*Azospirillum*, P-solubilizer, K-releaser, Zn-solubilizer and PGP isolate).

T<sub>4</sub>: Microbial consortium 3 (*Azotobacter*, *Azospirillum*, P-solubilizer, K-releaser, Zn-solubilizer and PGP isolate).

#### Microbial inoculation

Microbial consortia were prepared and added to the pots at the rate of 3ml/ pot according to the treatments.

### RESULTS AND DISCUSSION

#### Effect of microbial consortia on plant height at different growth stages of sorghum

At 30DAS sorghum plant height was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) 59.50 cm, which was significantly higher than T<sub>3</sub> (microbial consortia -2) 54.67 cm. At 120 DAS plant height was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) 139.83 cm, which was

\*Corresponding Author

significantly higher than  $T_3$  (microbial consortia -2) 128.83 cm. (Table-1)

Plant height was highest in  $T_4$  (microbial consortia -3) followed by  $T_3$  (microbial consortia -2) compared to  $T_2$  (microbial consortia -1) at all stages of plant growth. Microbial consortia -3 had dual effect of *Azotobacter* and *Azospirillum* which showed positive response on plant growth compared to the other two consortia. (Table-1)

Similar results were reported in the earlier studies with respect to plant height in different crops due to microbial inoculants application. Study by Burd *et al.* (2000) reported that *Pseudomonas*, *Azospirillum* and *Azotobacter* strains inoculation enhance the plant growth. Plant growth promoting rhizobacteria might enhance plant height and productivity by synthesizing phytohormones, increasing the local availability of nutrients, facilitating the uptake of plant nutrients by the plants and antagonizing plant pathogens (Hussain *et al.*, 2013).

#### **Effect of microbial consortia on shoot dry weight of sorghum**

Shoot dry weight was significantly highest in treatment  $T_4$  (microbial consortia -3) 20.43 g plant<sup>-1</sup>, which was significantly higher than  $T_3$  (microbial consortia -2) 18.23 g plant<sup>-1</sup> and comparatively lowest shoot dry weight was recorded in  $T_1$  (control) 10.74 g plant<sup>-1</sup>. Shoot dry weight was highest in  $T_4$  (microbial consortia -3) followed by  $T_3$  (microbial consortia -2) compared to  $T_2$  (microbial consortia -1) (Table-2). Microbial consortia -3 had dual effect of *Azotobacter* and *Azospirillum* which showed positive response on shoot dry weight compared to the other two consortia.

#### **Effect of microbial consortia on root dry weight of sorghum**

Root dry weight was significantly highest in treatment  $T_4$  (microbial consortia -3) 28.33 g plant<sup>-1</sup>, which was significantly higher than  $T_3$  (microbial consortia -2) 25.38 g plant<sup>-1</sup> and comparatively lowest root dry was recorded in  $T_1$  (control) 13.44 g plant<sup>-1</sup>. Root dry weight was highest in  $T_4$  (microbial consortia -3) followed by  $T_3$  (microbial consortia -2) compared to  $T_2$  (microbial consortia -1) (Table-2). Microbial consortia -3 had dual effect of *Azotobacter* and *Azospirillum* which showed positive response on root dry weight compared to the other two consortia. Root weight was generally more responsive to microbial inoculation. Mane *et al.*, 2000 reported that dual inoculation with *Azospirillum* and PSB increased the dry weight of roots in pearl millet.

#### **Effect of microbial consortia on total dry weight of sorghum**

Total dry weight was significantly highest in treatment  $T_4$  (microbial consortia -3) 48.76 g plant<sup>-1</sup>, followed by  $T_3$  (microbial consortia -2) 43.61 g plant<sup>-1</sup> and comparatively lowest total dry was recorded in  $T_1$  (control) 24.18 g plant<sup>-1</sup>. Total dry weight was highest in  $T_4$  (microbial consortia -3) followed by  $T_3$

(microbial consortia -2) compared to  $T_2$  (microbial consortia -1) (Table-2). Microbial consortia -3 had dual effect of *Azotobacter* and *Azospirillum* which showed positive response on total dry weight compared to the other two consortia.

Results were accordance to Kannan and Ponmurgan (2010), who stated that application of *Azospirillum* and other PGPR had increased the fresh and dry weight of rice plants.

#### **Effect of microbial consortia on PGPR population at different stages of sorghum**

##### ***Azotobacter* population at different intervals of sorghum crop**

*Azotobacter* population at the initial was significantly highest in treatment  $T_4$  (microbial consortia -3) log 8.46 which was on par with  $T_2$  (microbial consortia -1) log 8.44 and comparatively lowest *Azotobacter* population was found in  $T_1$  (control) log 5.16 (Table-4)

*Azotobacter* population at 120 DAS was significantly highest in treatment  $T_4$  (microbial consortia -3) log 7.71 which was on par with  $T_2$  (microbial consortia -1) log 7.45 and comparatively lowest *Azotobacter* population was found in  $T_1$  (control) log 4.72. (Table-4)

The microbial counts increased initially during crop growth and reduced substantially at harvest. The less microbial counts at harvest stage might be due to reduction in root exudates at that stage as compared to peak at vegetative or flowering stage. In the study statistical analysis revealed that *Azotobacter* population was significantly declined at time of harvest as compared to other time intervals. This may be due to availability of root exudates and nutrients level in rhizospheric soil were decreased at crop maturity stage. The similar results were also observed by Soleimanzadeh and Gooshchi (2013).

##### ***Azospirillum* population at different intervals of sorghum crop**

*Azospirillum* population at the initial was significantly highest in treatment  $T_4$  (microbial consortia -3) log 8.34 which was on par with  $T_3$  (microbial consortia -2) log 8.32 and comparatively lowest *Azospirillum* population was found in  $T_2$  (microbial consortia -2) log 5.19. (Table-5)

*Azospirillum* population at the 120 DAS was significantly highest in treatment  $T_3$  (microbial consortia -2) log 7.91 which was significantly different with  $T_4$  (microbial consortia -3) log 7.69 and comparatively lowest *Azospirillum* population was found in  $T_1$  (control) log 4.56. (Table-5)

The difference in the survival efficiency among the isolates was due to the amount of root exudates produced by plants. These exudates affect growth rates and metabolism of bacteria. This study clearly showed a significant decrease in *Azospirillum* population at time of harvest as compared to other time intervals. Availability of root exudates and nutrients at higher level in rhizospheric soil get decreased at crop maturity stage (Raul *et al.*, 2009).

### Phosphorus solubilizing bacteria population at different intervals of sorghum crop

Phosphorus solubilizing bacteria population at the initial was significantly highest in treatment T<sub>2</sub> (microbial consortia-1) log 8.37 which was statistically on par with T<sub>3</sub> (microbial consortia -2) log 8.32 and comparatively lowest PSB population was found in T<sub>1</sub> (control) log 5.25. (Table-6)

Phosphorus solubilizing bacteria population at 120 DAS was significantly highest in treatment T<sub>3</sub> (microbial consortia -2) log 6.61 which was statistically on par with T<sub>4</sub> (microbial consortia -3) log 6.59 and comparatively lowest PSB population was found in T<sub>1</sub> (control) log 3.16. (Table-6)

A considerably higher concentration of phosphate solubilizing bacteria was commonly found in the rhizosphere in comparison with non-rhizosphere soil (Katznelson *et al.*, 1962) which was significantly affected by the crop growth stage.

### Potassium releasing bacteria population at different intervals of sorghum crop

Potassium releasing bacteria population at the initial was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) log 7.35 which was statistically on par with T<sub>3</sub> (microbial consortia -2) and T<sub>2</sub> (microbial consortia -1) log 7.32 and comparatively lowest KRB population was found in T<sub>1</sub> (control) log 4.20. (Table-7)

Potassium releasing bacteria population at 120 DAS was significantly highest in treatment T<sub>3</sub> (microbial consortia -2) log 6.84 which was statistically on par with T<sub>2</sub> (microbial consortia -1) log 6.83 and comparatively lowest KRB population was found in T<sub>1</sub> (control) log 3.56. (Table-7)

The difference in the survival efficiency among the isolates was due to the amount of root exudates produced by plants. These exudates affect growth rates and metabolism of bacteria.

### Zinc solubilizing bacteria population at different intervals of sorghum crop

Zinc solubilizing bacteria population at the initial was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) log 7.23 which was statistically on par with T<sub>2</sub> (microbial consortia -1) log 7.13 and comparatively lowest ZnSB population was found in T<sub>1</sub> (control) log 4.20. (Table-8)

Zinc solubilizing bacteria population at 120 DAS was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) log 6.83 which was significantly different with T<sub>3</sub> (microbial consortia -2) log 6.62 and comparatively lowest ZnSB population was found in T<sub>1</sub> (control) log 3.15. (Table-8)

### Other special PGPR population at different intervals of sorghum crop

Other special PGPR population at the initial was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) log 8.00 which was statistically on par with T<sub>3</sub> (microbial consortia -2) log 7.99 and T<sub>2</sub> (microbial consortia -1) log 7.96, while comparatively lowest population was found in T<sub>1</sub> (control) log 5.26. (Table-9)

Other special PGPR population at 120 DAS was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) log 6.96 which was significantly different with T<sub>3</sub> (microbial consortia -2) log 6.84, while comparatively lowest population was found in T<sub>1</sub> (control) log 3.55. (Table-9)

### Effect of microbial consortia on nutrient uptake of sorghum

#### Nitrogen uptake

Nitrogen uptake was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) 1.41% which was significantly different with T<sub>3</sub> (microbial consortia -2) 1.27% and lowest nitrogen uptake was found in T<sub>1</sub> (control) 0.89%. (Table-3)

Co-inoculation of *Bacillus polymyxa* and *Pseudomonas striata* strains showing phosphate-solubilizing ability along with a strain of *Azospirillum brasiliense* resulted in significant increase in N and P uptake as compared to individual inoculations in sorghum was reported by Alagawadi and Gour (1992).

#### Phosphorus uptake

Phosphorus uptake was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) 0.17% which was significantly different with T<sub>3</sub> (microbial consortia -2) 0.16% and lowest phosphorus uptake was found in T<sub>1</sub> (control) 0.12%. (Table-3)

#### Potassium uptake

Potassium uptake was significantly highest in treatment T<sub>4</sub> (microbial consortia -3) 1.60% which was significantly different with T<sub>3</sub> (microbial consortia -2) 1.54% and lowest potassium uptake was found in T<sub>1</sub> (control) 0.81%. (Table-3)

All most all the nutrients uptake was highest in T<sub>4</sub> (microbial consortia -3) followed by T<sub>3</sub> (microbial consortia -2) compared to T<sub>2</sub> (microbial consortia -1). Microbial consortia -3 had dual effect of *Azotobacter* and *Azospirillum* which showed positive response on plant nutrient uptake compared to the other two consortia.

Ramakrishnan and Bhuvaneswari (2014) found that finger millet treated with *Azospirillum* + PSB increased the plant growth and N, P uptake.

**Table 1.** Effect of microbial consortia on plant height at different intervals of sorghum crop

|                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
|----------------|--------|--------|--------|---------|
| T <sub>1</sub> | 37.83  | 74.83  | 81.83  | 86.17   |
| T <sub>2</sub> | 49.33  | 100.93 | 108.77 | 112.77  |

|                      |       |        |        |        |
|----------------------|-------|--------|--------|--------|
| <b>T<sub>3</sub></b> | 54.67 | 119.93 | 124.63 | 128.83 |
| <b>T<sub>4</sub></b> | 59.50 | 130.73 | 135.60 | 139.83 |
| <b>SE(m)</b>         | 0.250 | 0.117  | 0.178  | 0.162  |
| <b>CD (P=0.05)</b>   | 0.828 | 0.368  | 0.589  | 0.535  |
| <b>CV</b>            | 0.860 | 0.190  | 0.273  | 0.239  |

**Table 2.** Effect of microbial consortia on different growth parameters of sorghum crop

|                      | Shoot fresh weight (g plant <sup>-1</sup> ) | Shoot dry weight (g plant <sup>-1</sup> ) | Root fresh weight (g plant <sup>-1</sup> ) | Root dry weight (g plant <sup>-1</sup> ) | Total dry weight (g plant <sup>-1</sup> ) |
|----------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|
| <b>T<sub>1</sub></b> | 80.42                                       | 10.74                                     | 69.58                                      | 13.44                                    | 24.18                                     |
| <b>T<sub>2</sub></b> | 99.23                                       | 16.51                                     | 82.32                                      | 20.64                                    | 37.16                                     |
| <b>T<sub>3</sub></b> | 114.02                                      | 18.23                                     | 89.23                                      | 25.38                                    | 43.61                                     |
| <b>T<sub>4</sub></b> | 132.12                                      | 20.43                                     | 105.09                                     | 28.33                                    | 48.76                                     |
| <b>SE(m)</b>         | 0.324                                       | 0.104                                     | 0.168                                      | 0.224                                    | 0.230                                     |
| <b>CD (P=0.05)</b>   | 1.074                                       | 0.344                                     | 0.556                                      | 0.743                                    | 0.762                                     |
| <b>CV</b>            | 0.528                                       | 1.091                                     | 0.336                                      | 1.771                                    | 1.037                                     |

**Table 3.** Effect of microbial consortia on nutrient uptake sorghum

|                      | N uptake (%) | P uptake (%) | K uptake (%) |
|----------------------|--------------|--------------|--------------|
| <b>T<sub>1</sub></b> | 0.89         | 0.12         | 0.81         |
| <b>T<sub>2</sub></b> | 1.09         | 0.15         | 1.47         |
| <b>T<sub>3</sub></b> | 1.27         | 0.16         | 1.54         |
| <b>T<sub>4</sub></b> | 1.41         | 0.17         | 1.60         |
| <b>SE(m)</b>         | 0.019        | 0.002        | 0.012        |
| <b>CD (P=0.05)</b>   | 0.062        | 0.005        | 0.039        |
| <b>CV</b>            | 2.787        | 1.789        | 1.521        |

**Table 4.** *Azotobacter* population at different intervals of sorghum crop

| Treatments           | log CFU g <sup>-1</sup> |        |        |        |         |
|----------------------|-------------------------|--------|--------|--------|---------|
|                      | Zero day                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
| <b>T<sub>1</sub></b> | 5.16                    | 5.53   | 6.27   | 6.34   | 4.72    |
| <b>T<sub>2</sub></b> | 8.44                    | 8.71   | 9.47   | 9.84   | 7.45    |
| <b>T<sub>3</sub></b> | 5.39                    | 5.65   | 6.40   | 6.74   | 4.98    |
| <b>T<sub>4</sub></b> | 8.46                    | 8.78   | 9.47   | 9.93   | 7.71    |
| <b>SE(m)</b>         | 0.051                   | 0.018  | 0.028  | 0.013  | 0.009   |
| <b>CD (P=0.05)</b>   | 0.168                   | 0.061  | 0.092  | 0.042  | 0.030   |
| <b>CV</b>            | 1.277                   | 0.442  | 0.610  | 0.266  | 0.249   |

**Table 5.** *Azospirillum* population at different intervals of sorghum

| Treatments           | log CFU g <sup>-1</sup> |        |        |        |         |
|----------------------|-------------------------|--------|--------|--------|---------|
|                      | Zero day                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
| <b>T<sub>1</sub></b> | 5.33                    | 5.58   | 6.34   | 6.63   | 4.56    |
| <b>T<sub>2</sub></b> | 5.19                    | 5.68   | 6.39   | 6.75   | 4.66    |
| <b>T<sub>3</sub></b> | 8.32                    | 8.40   | 9.39   | 9.41   | 7.91    |
| <b>T<sub>4</sub></b> | 8.34                    | 8.48   | 9.45   | 9.47   | 7.69    |
| <b>SE(m)</b>         | 0.023                   | 0.011  | 0.031  | 0.015  | 0.015   |
| <b>CD (P=0.05)</b>   | 0.076                   | 0.036  | 0.104  | 0.050  | 0.049   |
| <b>CV</b>            | 0.584                   | 0.265  | 0.690  | 0.322  | 0.415   |

**Table 6.** PSB population at different intervals of sorghum crop

| Treatments           | log CFU g <sup>-1</sup> |        |        |        |         |
|----------------------|-------------------------|--------|--------|--------|---------|
|                      | Zero day                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
| <b>T<sub>1</sub></b> | 5.25                    | 5.55   | 6.46   | 6.65   | 3.16    |
| <b>T<sub>2</sub></b> | 8.37                    | 8.64   | 9.10   | 9.46   | 6.47    |
| <b>T<sub>3</sub></b> | 8.32                    | 8.58   | 9.16   | 9.39   | 6.61    |
| <b>T<sub>4</sub></b> | 8.26                    | 8.81   | 9.09   | 9.45   | 6.59    |
| <b>SE(m)</b>         | 0.020                   | 0.018  | 0.016  | 0.013  | 0.034   |
| <b>CD (P=0.05)</b>   | 0.066                   | 0.060  | 0.052  | 0.042  | 0.114   |
| <b>CV</b>            | 0.454                   | 0.395  | 0.321  | 0.253  | 1.042   |

**Table 7.** KRB population at different intervals of sorghum crop

| Treatments           | log CFU g <sup>-1</sup> |        |        |        |         |
|----------------------|-------------------------|--------|--------|--------|---------|
|                      | Zero day                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
| <b>T<sub>1</sub></b> | 4.20                    | 5.64   | 6.56   | 6.93   | 3.56    |
| <b>T<sub>2</sub></b> | 7.32                    | 8.45   | 9.39   | 9.69   | 6.83    |
| <b>T<sub>3</sub></b> | 7.32                    | 8.45   | 9.43   | 9.77   | 6.84    |
| <b>T<sub>4</sub></b> | 7.35                    | 8.47   | 9.46   | 9.84   | 6.72    |
| <b>SE(m)</b>         | 0.021                   | 0.013  | 0.013  | 0.006  | 0.013   |
| <b>CD (P=0.05)</b>   | 0.068                   | 0.043  | 0.045  | 0.020  | 0.043   |
| <b>CV</b>            | 0.546                   | 0.289  | 0.268  | 0.116  | 0.372   |

**Table 8.** ZnSB population at different intervals of sorghum crop

| Treatments           | log CFU g <sup>-1</sup> |        |        |        |         |
|----------------------|-------------------------|--------|--------|--------|---------|
|                      | Zero day                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
| <b>T<sub>1</sub></b> | 4.20                    | 5.58   | 6.28   | 6.75   | 3.15    |
| <b>T<sub>2</sub></b> | 7.13                    | 8.22   | 9.38   | 9.84   | 6.40    |
| <b>T<sub>3</sub></b> | 6.99                    | 8.16   | 9.42   | 9.96   | 6.62    |
| <b>T<sub>4</sub></b> | 7.23                    | 8.32   | 9.43   | 10.04  | 6.83    |
| <b>SE(m)</b>         | 0.033                   | 0.010  | 0.037  | 0.007  | 0.028   |
| <b>CD (P=0.05)</b>   | 0.108                   | 0.034  | 0.121  | 0.024  | 0.093   |
| <b>CV</b>            | 0.884                   | 0.237  | 0.736  | 0.137  | 0.847   |

**Table 9.** Other special PGP organisms population at different intervals of sorghum crop

| Treatments           | log CFU g <sup>-1</sup> |        |        |        |         |
|----------------------|-------------------------|--------|--------|--------|---------|
|                      | Zero day                | 30 DAS | 60 DAS | 90 DAS | 120 DAS |
| <b>T<sub>1</sub></b> | 5.26                    | 5.64   | 5.93   | 6.36   | 3.55    |
| <b>T<sub>2</sub></b> | 7.96                    | 8.30   | 8.80   | 9.08   | 6.82    |
| <b>T<sub>3</sub></b> | 7.99                    | 8.33   | 8.92   | 9.46   | 6.84    |
| <b>T<sub>4</sub></b> | 8.00                    | 8.38   | 8.95   | 9.70   | 6.96    |
| <b>SE(m)</b>         | 0.015                   | 0.013  | 0.005  | 0.022  | 0.012   |
| <b>CD (P=0.05)</b>   | 0.049                   | 0.044  | 0.017  | 0.074  | 0.041   |
| <b>CV</b>            | 0.349                   | 0.301  | 0.111  | 0.449  | 0.356   |

## CONCLUSION

Microbial consortia -3 showed increase in all the plant growth parameters like plant height, shoot dry weight, root dry weight, total dry weight, N, P and K uptake and microbial population survival, compared to microbial consortia -2. While comparatively low response was shown by microbial consortia -1. So Microbial consortia 3 and Microbial consortia 2 were recommended for further research.

## REFERENCES

Alagawadi, A.R and Gaur, A.C. (1992). Inoculation of *Azospirillum brasiliense* and phosphate-solubilizing bacteria on yield of sorghum (*Sorghum bicolor* L.) in dryland. *Tropical Agriculture*. 69: 347-350.

Amalraj, E.L.D., Mohanty, D., Kumar, G.P., Desai, S., Ahmed, S.K.M.H., Pradhan, R and Khan, S.S. (2015). Potential microbial consortium for plant growth promotion of sunflower (*Helianthus annuus* L.). *Proceedings of National Academy of*

*Sciences, India, Section - Biological Sciences.* 85 (2): 635–642.

**Burd, G.I., Dixon, D.G and Glick, B.R.** (2000). Plant growth promoting rhizobacteria that decrease heavy metal toxicity in plants. *Canadian Journal of Microbiology.* 33: 237-245.

**Hussain, M.I., Asghar, H.N., Arshad, M. and Shahbaz, M.** (2013). Screening of multi-trait rhizobacteria to improve maize growth under axenic conditions. *The Journal of Animal and Plant Sciences.* 23 (2): 514-520.

**Kannan, T. and Ponmurugan, P.** (2010). Response of paddy (*Oryza sativa L.*) varieties to *Azospirillum brasilense* inoculation. *J Phytol* 2(6): 8-13.

**Khalid, A., Arshad, M. and Zahir, Z.A.** (2006). Phytohormones: microbial production and applications. *Biological approaches to sustainable soil systems.* Taylor & Francis, Boca Raton, Florida. pp. 207–220.

**Mane, S.S., Hadgaonkar, A.K., Suryawanshi, A.P and Salunke, S.D.** (2000). Response of pearl millet to inoculation of phosphorus solubilizing bacteria and *Azospirillum*. *Journal of Indian Society of Soil Science.* 48: 617-619.

**Ramakrishnan, K. and Bhuvaneswari, G.** (2014). Effect of inoculation of AM fungi and beneficial microorganisms on growth and nutrient uptake of *Eleusine coracana* L.) Gaertn. (Finger millet). *International Letters of Natural Sciences.* 13: 59-69.

**Raul, O., Pedraza., Carlos, H. and Bellone** (2009). *Azospirillum* inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. *European Journal of Soil Biology.* 45: 36-43.

**Soleimanzadeh, H. and Gooshchi, F.** (2013). Effects of *Azotobacter* and nitrogen chemical fertilizer on yield and yield components of wheat (*Triticum aestivum L.*). *World Applied Sciences.* 21 (8): 1176-80.

**Vlassak, K.L., Van, H. and Duchateau, L.** (1992). Isolation and characterization of fluorescent *Pseudomonas* associated with the roots of rice and banana grown in Srilanka. *Plant and Soil.* 145: 51-63.