

INFLUENCE OF PLANT GROWTH REGULATORS ON GROWTH, YIELD AND ITS QUALITY OF TOMATO (*LYCOPERSICON ESCULENTUM MILL.*)

Vikas Singh¹, Niranjan Singh*² and Aashutosh Upadhyay³

Department of vegetable science C.S.A.U.A.T Kanpur Uttar Pradesh

Assistant Professor, Department of vegetable science C.S.A.U.A.T Kanpur Uttar Pradesh

Department of vegetable science C.S.A.U.A.T Kanpur Uttar Pradesh

Received-02.12.2019, Revised-19.12.2019

Abstract: On the basis of experiment conducted during rabi season of 2018 – 2019 at Vegetable Research Farm Kalyanpur, Department of Vegetable Science of C. S. Azad University of Agriculture and Technology, Kanpur with the summary of results it can be concluded that plant height (cm),, number of primary and secondary branches per plant., number of fruits per plant,, fruit length (cm),, fruit diameter (cm),, fruit weight (g),, fruit yield per plant (g) and yield per hectare (q) were increased with GA₃ @ 40 ppm concentration however number of flowers were increased with 2, 4-D @ 5 ppm while the TSS and weight of 100 seed were increased by 2, 4-D @ 10 ppm concentrations. Among NAA treatments NAA 25 ppm produced higher (69.95 cm) plant height followed by NAA 20 (67.16 cm) and 15 ppm (66.39 cm) which were significantly greater over control (59.36 cm). The NAA at 25 ppm concentration produced 69.95 cm plant height which was significant over NAA 20 and 15 ppm while NAA 20 and 15 ppm did not differ significantly.

Keyword: Influence of plant growth, Yield, Quality

INTRODUCTION

Tomato (*Lycopersicon esculentum* Mill.) belongs to the genus *Lycopersicon* under Solanaceae family. Tomato is a herbaceous sprawling plant growing to 1-3 m in height with weak woody stem. It is a true diploid with 2n=24. Plant is annual with herbaceous prostrate stem having determinate or indeterminate growth habit. In the determinate growth, terminal bud ends in a floral bud and further growth is arrested resulting in dwarf and bushy stature. In indeterminate growth, terminal bud is a leafy bud and terminal and lateral buds continue to grow and there are less production of flowers and fruits on main stem. Flowers are borne in racemose cyme and flower cluster is known as "truss" and its position is extra axillary. The flowers are yellow in colour. They are hermaphrodite, pendulous, pentamerous and hypogynous. Stamens are six in number and inserted on throat of corolla tube and anthers are convert around style. Tomato is a self-pollinated crop due to hermaphrodite flowers, introvert stigma, internal and synchronized anther dehiscence, and stigma respectively. Tomato is a native to Peruvian and Mexican region. Though there are no definite records of when and how it came to India, the Portuguese perhaps introduced it to India. Tomato is one of the most important "protective foods" because of its special nutritive value. It is one of the most versatile vegetable with wide usage in Indian culinary tradition. The fruits of cultivated Tomato varieties vary in size from cherry tomatoes, about 1–2 cm in size to beefsteak tomatoes, about 10 cm or more in diameter. Most cultivars produce red fruits when ripe. Tomato is a native to Peruvian and Mexican region. Though there are no definite records of when and how it came to India, the Portuguese

perhaps introduced it to India. Tomato is one of the most important "protective foods" because of its special nutritive value. It is one of the most versatile vegetable with wide usage in Indian culinary tradition. The fruits of cultivated Tomato varieties vary in size from cherry tomatoes, about 1–2 cm in size to beefsteak tomatoes, about 10 cm or more in diameter. Most cultivars produce red fruits when ripe. The yield of tomato can be increased and sustained by agronomic and nutritional management or by some exogenous supplementation with enzymes or growth hormones. Several important growth and development processes in plants are controlled and influenced by plant growth regulators (PGRs). Plant hormone is an organic substance which promotes growth of plant and used in low concentration. Plant hormones play a significant role in physiological phenomena.

MATERIALS AND METHODS

The field experiment entitled "**Influence of plant growth regulators on growth, yield and quality of Tomato (*Lycopersicon esculentum* Mill.)**" was conducted at Vegetable Research Farm Kalyanpur, Department of Vegetable Science of C. S. Azad University of Agriculture and Technology, Kanpur during rabi season of 2018 – 2019. The important growth regulators GA₃, NAA and 2, 4-D were taken as foliar spray under different concentrations individually i.e. GA₃ 20, 30, 40 ppm, NAA at 15, 20, 25 ppm and 2, 4-D 5, 10, 15 ppm along with a control (water spray). Such a way in this experiment there were 10 treatments taken as above and tested against control, replicated thrice in Randomised Block Design (RBD). T₁ GA₃ 20 ppm, T₂ GA₃ 30 ppm, T₃ GA₃ 40 ppm, T₄ NAA 15 ppm T₅ NAA 20

*Corresponding Author

ppm **T₆** NAA 25 ppm. **T₇** 2, 4 D 5 ppm **T₈** 2, 4 D 10 ppm **T₉** 2, 4 D 15 ppm and **T₁₀** Control (water spray). The observations recorded was Plant Height (cm), Number of primary branches per plant, Number of secondary branches per plant, Number of flowers per

plant, Number of fruits per plant, Length of fruit (cm), Diameter of fruit (cm), Fruit Weight (g), Fruit Yield per plant (g), Fruit Yield per Hectare (q), Total soluble solid (TSS), Weight of 100 seeds (mg)

Table 1. Influence of different concentrations of GA₃, NAA and 2, 4-D on plant height (cm)

Symbol	Treatments	Plant height (cm)
T ₁	GA ₃ 20 ppm	71.07
T ₂	GA ₃ 30 ppm	74.05
T ₃	GA ₃ 40 ppm	76.06
T ₄	NAA 15 ppm	66.39
T ₅	NAA 20 ppm	67.16
T ₆	NAA 25 ppm	69.95
T ₇	2, 4-D 5 ppm	60.48
T ₈	2, 4-D 10 ppm	58.33
T ₉	2, 4-D 15 ppm	56.61
T ₁₀	Control (water spray)	59.36
	SE(d)	0.64
	CD at 5 %	1.35

Table 2. Influence of different concentrations of GA₃, NAA and 2, 4-D on number of primary branches per plant

Symbol	Treatment	Number of primary branches per plant		
		30 DAT	60 DAT	90 DAT
T ₁	GA ₃ 20 ppm	7.2	11.51	12.96
T ₂	GA ₃ 30 ppm	7.42	11.57	13.20
T ₃	GA ₃ 40 ppm	7.54	12.41	13.32
T ₄	NAA 15 ppm	5.62	9.23	10.74
T ₅	NAA 20 ppm	6.19	9.49	11.40
T ₆	NAA 25 ppm	6.76	9.81	11.85
T ₇	2, 4-D 5 ppm	5.89	9.14	10.18
T ₈	2, 4-D 10 ppm	5.47	9.03	10.06
T ₉	2, 4-D 15 ppm	5.01	8.95	9.08
T ₁₀	Control (water spray)	4.83	8.06	8.99
	SE(d)	0.10	0.21	0.25
	CD at 5 %	0.22	0.45	0.53

Table 3. Influence of different concentrations of GA₃, NAA and 2, 4-D on number of secondary branches per plant

Symbol	Treatment	Number of secondary branches per plant		
		30 DAT	60 DAT	90 DAT
T ₁	GA ₃ 20 ppm	1.68	8.23	12.42
T ₂	GA ₃ 30 ppm	1.71	8.64	12.59
T ₃	GA ₃ 40 ppm	1.78	8.74	12.80
T ₄	NAA 15 ppm	1.34	6.74	9.89

T ₅	NAA 20 ppm	1.39	7.13	10.13
T ₆	NAA 25 ppm	1.46	7.58	11.49
T ₇	2, 4-D 5 ppm	1.27	6.71	9.56
T ₈	2, 4-D 10 ppm	1.25	6.55	9.35
T ₉	2, 4-D 15 ppm	1.15	5.87	8.91
T ₁₀	Control (water spray)	1.09	5.73	8.54
	SE(d)	0.02	0.17	0.13
	CD at 5 %	0.05	0.37	0.28

Table 4. Influence of different concentrations of GA₃, NAA and 2, 4-D on number of flowers per plant

Symbol	Treatments	Number of flowers per plant
T ₁	GA ₃ 20 ppm	34.37
T ₂	GA ₃ 30 ppm	35.08
T ₃	GA ₃ 40 ppm	36.48
T ₄	NAA 15 ppm	34.19
T ₅	NAA 20 ppm	33.32
T ₆	NAA 25 ppm	32.92
T ₇	2, 4-D 5 ppm	36.74
T ₈	2, 4-D 10 ppm	31.10
T ₉	2, 4-D 15 ppm	30.57
T ₁₀	Control (water spray)	29.82
	SE(d)	0.83
	CD at 5 %	1.76

Table 5. Influence of different concentrations of GA₃, NAA and 2, 4-D on number of fruits per plant

Symbol	Treatments	Number of fruits per plant
T ₁	GA ₃ 20 ppm	30.44
T ₂	GA ₃ 30 ppm	30.88
T ₃	GA ₃ 40 ppm	32.67
T ₄	NAA 15 ppm	26.16
T ₅	NAA 20 ppm	28.00

T ₆	NAA 25 ppm	28.24
T ₇	2, 4-D 5 ppm	24.55
T ₈	2, 4-D 10 ppm	23.41
T ₉	2, 4-D 15 ppm	23.30
T ₁₀	Control (water spray)	21.93
	SE(d)	0.83
	CD at 5 %	1.76

Table 6. Influence of different concentrations of GA₃, NAA and 2, 4-D on fruit length (cm)

Symbol	Treatments	Fruit length (cm)
T ₁	GA ₃ 20 ppm	4.49
T ₂	GA ₃ 30 ppm	4.75
T ₃	GA ₃ 40 ppm	5.15
T ₄	NAA 15 ppm	4.27
T ₅	NAA 20 ppm	4.45
T ₆	NAA 25 ppm	4.47
T ₇	2, 4-D 5 ppm	3.99
T ₈	2, 4-D 10 ppm	4.03
T ₉	2, 4-D 15 ppm	4.11
T ₁₀	Control (water spray)	3.66
	SE(d)	0.11
	CD at 5 %	0.23

Table 7. Influence of different concentrations of GA₃, NAA and 2, 4-D on fruit diameter (cm)

Symbol	Treatments	Fruit diameter (cm)
T ₁	GA ₃ 20 ppm	6.18
T ₂	GA ₃ 30 ppm	6.58
T ₃	GA ₃ 40 ppm	6.75
T ₄	NAA 15 ppm	5.07
T ₅	NAA 20 ppm	5.44
T ₆	NAA 25 ppm	5.86
T ₇	2, 4-D 5 ppm	4.28
T ₈	2, 4-D 10 ppm	4.50
T ₉	2, 4-D 15 ppm	4.69
T ₁₀	Control (water spray)	3.88
	SE(d)	0.15
	CD at 5 %	0.33

Table 8. Influence of different concentrations of GA₃, NAA and 2, 4-D on fruit weight (g)

Symbol	Treatments	Fruit weight (g.)
T ₁	GA ₃ 20 ppm	56.76
T ₂	GA ₃ 30 ppm	58.11
T ₃	GA ₃ 40 ppm	61.38
T ₄	NAA 15 ppm	50.30
T ₅	NAA 20 ppm	51.28
T ₆	NAA 25 ppm	57.76
T ₇	2, 4-D 5 ppm	44.02

T ₈	2, 4-D 10 ppm	46.06
T ₉	2, 4-D 15 ppm	48.07
T ₁₀	Control (water spray)	40.94
	SE(d)	0.92
	CD at 5 %	1.94

Table 9. Influence of different concentrations of GA₃, NAA and 2, 4-D on fruit yield per plant (g)

Symbol	Treatments	Fruit yield per plant (g)
T ₁	GA ₃ 20 ppm	1264.81
T ₂	GA ₃ 30 ppm	1287.99
T ₃	GA ₃ 40 ppm	1321.91
T ₄	NAA 15 ppm	1008.46
T ₅	NAA 20 ppm	1110.18
T ₆	NAA 25 ppm	1124.84
T ₇	2, 4-D 5 ppm	996.57
T ₈	2, 4-D 10 ppm	985.34
T ₉	2, 4-D 15 ppm	910.48
T ₁₀	Control (water spray)	889.72
	SE(d)	4.17
	CD at 5 %	8.82

Table 10. Influence of different concentrations of GA₃, NAA and 2, 4-D on fruit yield (q/h)

Symbol	Treatments	Fruit yield (q/h)
T ₁	GA ₃ 20 ppm	478.89
T ₂	GA ₃ 30 ppm	497.16
T ₃	GA ₃ 40 ppm	520.45
T ₄	NAA 15 ppm	429.82
T ₅	NAA 20 ppm	445.26
T ₆	NAA 25 ppm	457.18
T ₇	2, 4-D 5 ppm	422.31
T ₈	2, 4-D 10 ppm	413.19
T ₉	2, 4-D 15 ppm	388.05
T ₁₀	Control (water spray)	370.56
	SE(d)	5.03
	CD at 5 %	10.65

Table 11. Influence of different concentrations of GA₃, NAA and 2, 4-D on TSS (°Brix)

Symbol	Treatments	TSS (°Brix)
T ₁	GA ₃ 20 ppm	5.24
T ₂	GA ₃ 30 ppm	5.27
T ₃	GA ₃ 40 ppm	5.20
T ₄	NAA 15 ppm	5.38
T ₅	NAA 20 ppm	5.40
T ₆	NAA 25 ppm	5.37
T ₇	2, 4-D 5 ppm	5.39
T ₈	2, 4-D 10 ppm	5.62
T ₉	2, 4-D 15 ppm	5.58
T ₁₀	Control (water spray)	5.26
	SE(d)	0.02
	CD at 5 %	0.05

Table 12. Influence of different concentrations of GA₃, NAA and 2, 4-D on weight of 100 seeds

Symbol	Treatments	Weight of 100 seeds (mg)
T ₁	GA ₃ 20 ppm	258
T ₂	GA ₃ 30 ppm	265
T ₃	GA ₃ 40 ppm	265
T ₄	NAA 15 ppm	275
T ₅	NAA 20 ppm	278
T ₆	NAA 25 ppm	281
T ₇	2, 4-D 5 ppm	290
T ₈	2, 4-D 10 ppm	305
T ₉	2, 4-D 15 ppm	295
T ₁₀	Control (water spray)	245
SE(d)		7.61
	CD at 5 %	16.12

RESULTS AND DISCUSSION

The maximum plant height of 76.06 cm was recorded at 40 ppm GA₃ as compared to control (59.36 cm) followed GA₃ 30 ppm (74.05 cm). Significantly GA₃ at 40 ppm concentration produced maximum number of primary branches per plant at 30, 60 and 90 DAT i.e. 7.54, 12.41 followed by GA₃ 30 ppm (7.52, 11.57 and 13.20) as compared to control 4.83, 8.06 and 8.99. Number of secondary branches per plant were similarly affected higher values under GA₃ at 40 ppm (1.78, 8.74 and 12.80) followed by GA₃ 30 ppm (1.71, 8.74 and 12.59) were recorded. Whereas minimum branches were obtained under control (1.09, 5.73 and 8.54). Significantly the maximum (36.74) number of flowers per plant was recorded from 2, 4-D at 5 ppm followed by GA₃ 40 ppm (36.48) while the minimum (29.82) number of flowers per plant was recorded under control. Maximum number of fruits per plant were found (32.67) from GA₃ 40 ppm and the minimum (30.36) was recorded under control. Significantly the maximum (5.15 cm) fruit length of tomato was recorded under GA₃ 40 ppm against the minimum (3.66 cm) in control. The maximum (6.75 cm) fruit diameter was recorded by the treatment of GA₃ 40 ppm and other treatments also produced significantly higher values of fruit diameter as compared to control (3.88 cm). The maximum average fruit weight was recorded significantly by GA₃ 40 ppm (61.38 g) followed by GA₃ 30 ppm (58.11 g) while the minimum (40.94 g) weight of fruit was recorded under control. GA₃ at 40 ppm concentration proved best treatment and maximum yield of 1321.91 g per plant was noticed as compared to control (889.7 g). Significantly the maximum (520.45 q/ha) was recorded at GA₃ 40 ppm followed by GA₃ 30 ppm (497.16 q/ha) while the minimum yield per hectare was recorded under control (370.56 q/ha). Treatment of 2, 4-D 10 ppm produced significantly maximum TSS (5.62⁰Brix) followed by 2, 4-D 15 ppm (5.58⁰Brix) while the minimum TSS was recorded by GA₃ 40 ppm (5.20⁰Brix). Significantly the maximum

100 seed weight (305 mg) was exhibited by the treatment of 2, 4-D 10 ppm while the minimum (245 mg) was recorded under control.

CONCLUSION

On the basis of experiment conducted during *rabi* season of 2018 – 2019 at Vegetable Research Farm Kalyanpur, Department of Vegetable Science of C. S. Azad University of Agriculture and Technology, Kanpur with the summary of results it can be concluded that plant height (cm),, number of primary and secondary branches per plant., number of fruits per plant., fruit length (cm),, fruit diameter (cm),, fruit weight (g),, fruit yield per plant (g) and yield per hectare (q) were increased with GA₃ @ 40 ppm concentration however number of flowers were increased with 2, 4-D @ 5 ppm while the TSS and weight of 100 seed were increased by 2, 4-D @ 10 ppm concentrations.

REFERENCES

Akand, H. M., Mazid, K. H. E. M., Pulok, I. A. M., Choudhary, N. S. M. and Moonmoon, F. J. (2015). Growth and yield of tomato (*Lycopersicon esculentum* Mill.) as influenced by different level of gibberellic acid application. *International journal of applied research*, 1(3):71-74.

Akhtar, N., Bhuiyan, A. H., Quadir, A. and Mondal, F. (1997). Effect of NAA on yield and quality of summer tomato. *Annals Bangladesh Agric*, 6(1): 67-70.

Alam, S. M. and Naqvi, S. S. M. (1989). Effect of naphthalene acetic acid on fruit yield of tomato (*Lycopersicon esculentum* Mill.). *Pak.J.Bot*.21:275-278.

Bharti, N., Kumar, S. and Vibhuti, C. L. (2017). Effect of plant growth regulators in fruit volume and pericarp thickness in bell paper. *Indian Journal of Agric. Res.*, 51(5):488-492.

Bhosle, A. B., Khrbhade, S. B., Sanapand, P. B. and Gorad, M. K. (2002). Effect of growth

hormones on growth and yield of summer tomato (*Lycopersicon esculentum* Mill.) *Orissa Journal of Horticulture.*,**30** (2): 63-65.

Bokade, N., Bhalekar, M.N., Gupta, N.S. and Deshpande, A. (2006). Effect of growth regulators on growth and yield of tomato in summer. *J. Maharashtra Agric. Univ.*,**31**(1): 64-65.

Fraser, G. E., Beeson, W. L. and Phillips, R. L. (1991). Diet and Lung Cancer in California Seventh-day Adventists. *Am. J. Epidemiol.*,**133**(7):683-693.

Gelmesa, D., Abebie, B. and Desalegn, L. (2010). Effects of Gibberellic acid and 2,4-dichlorophenoxyacetic acid spray on fruit yield and quality of tomato (*Lycopersicon esculentum* Mill.). *Journal of Plant Breeding and Crop Science*,**2**(10): 316-324.

Gelmesa, D., Abebie, B. and Desalegn, L. (2012). Regulation of tomato (*Lycopersicon esculentum* Mill.) fruit setting and earliness by gibberellic acid and 2,4-dichlorophenoxy acetic acid application. *African Journal of Biotechnology*,**11**(51):11200-11206

Gogoi and Sukanya (2016). Effect of GA₃ and NAA on reproductive growth and yield of crop. *Research on crop*,**17**:758-762.

Gupta, P.K. and Gupta, A.K. (2000). Efficacy of plant growth regulators (IAA and NAA) and micronutrient mixtures on growth, flowering, fruiting and shelf-life of tomato (*Lycopersicon esculentum* Mill.) *Bioved*,**11**(1/2):25-29.

Gurjar, S. J., Banafar, R., Gupta, N., Gurjar, P. and Singh, L. (2018). Effect of NAA and GA₃ on growth and yield of tomato varieties. *Journal of Pharmacognosy and phytochemistry*, **7**(5):3157-3160.

Kumar, A., Biswas, T. K., Singh, N. and Lal, E. P. (2014). Effect of gibberellic acid on growth, quality and yield of tomato (*Lycopersicon esculentum* Mill.). *Journal of Agriculture and Veterinary Science*, **7**(IV):28-30.

Kumar, S., Singh, R., Singh, V., Singh, M. K. and Singh, K. A. (2018). Effect of plant growth regulators on growth, flowering, yield and quality of tomato (*Solanum lycopersicum* L.). *Journal of Pharmacognosy and Phytochemistry*,**7**(1):41-44.

Naeem, N., Istiaq, Khan, P., Mohammad, N., Khan, J. and Jamilah, B. (2001). Effect of gibberellic acid on growth and yield of tomato cv. Rome. *J. Biol. Sci.*, **1**(6):448-450.

Negruckii, S. F. (1960). The effect of gibberellic acid on the growth, productivity and fruit shape in tomatoes. *Fiziol. Rast.*,**7**: 734-736.

