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Abstract: Abiotic stress is a condition deviated from normal conditions which is mainly produced from the abiotic 

environmental factors or non living components. These factors affect the crop plants adversely via reducing growth and 

production. These non living components of environment are drought (water stress), water logging, extremes of temperature 

(high and low), high salinity/alkalinity, high acidity nutrient toxicity etc. Temperature (high and low), salinity stress and 

drought are major abiotic factor which affect much as compare to others non living factors. Abiotic stress severely limits 

plant growth and development, due to that final yield is reduced. 
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INTRODUCTION 

 

ccording to world estimates (Wang et al., 2007), 

an average of 50% yield losses in agricultural 

crops are caused by abiotic factors. These comprise 

mostly of high temperature (40%), salinity (20%), 

drought (17%), low temperature (15%) and other 

forms of stresses (Ashraf et al., 2008). Only 9% of 

the world area is conducive for crop production, 

while 91% is afflicted by various stressors. As per 

the current estimates (ICAR, 2010), 120.8 million ha 

constituting 36.5 per cent of geographical area in 

India is degraded due to soil erosion, 

salinity/alkalinity, soil acidity, water logging, and 

other edaphic problems (Anonymous, 2015). In 

India, on an average of 50% yield losses in 

agricultural crops are caused by abiotic factors 

mostly shared by high temperature (20%), low 

temperature (7%), salinity (10%), drought (9%), and 

other forms of stresses (4%) (Anonymous, 2015). In 

this review we are considering only drought and 

salinity stress. 

Drought: - Drought means the deficiency of water in 

soil or an imbalance in the plant water regime 

resulting in an excessive evapotranspiration from 

shoot over water uptake by root.  Agricultural 

drought means that the soil moisture and rainfall are 

less or not sufficient during the growing season.   

Response of plants to drought (Chaves et al. 2003, 

Larcher, 2003 and Kosova et al. 2014). 

Drought escape: - It is based on the minimizing 

adverse effect of drought condition on a plant. In this 

mechanism plant completed its life cycle before 

drought. Flowering time is an important trait related 

to drought adaptation, where a short life cycle can 

lead to drought escape (Araus et al., 2002). Crop 

duration is interactively determined by genotype and 

the environment. It is also determines the ability of 

the crop to escape from climatic stresses including 

drought. Matching growth duration of plants to soil 

moisture availability is critical to realize high seed 

yield (Siddique et al., 2003). Drought escape occurs 

when phenological development is successfully 

matched with periods of soil moisture availability, 

where the growing season is shorter and terminal 

drought stress predominates (Araus et al., 2002).  

Time of flowering is a major trait of a crop 

adaptation to the environment, particularly when the 

growing season is restricted by terminal drought and 

high temperatures. Developing short-duration 

varieties has been an effective strategy for 

minimizing yield loss from terminal drought, as early 

maturity helps the crop to avoid the period of stress 

(Kumar and Abbo, 2001). However, yield is 

generally correlated with the length of crop duration 

under favorable growing conditions, and any decline 

in crop duration below the optimum would tax yield 

(Turner et al., 2001). 

Drought avoidance:- It is based on minimizing the 

tissue dehydration by maintaining the high water 

potential in plant cells under limited water supply. 

Plant maximize water uptake by roots and minimize 

water loss by leaves. Drought avoidance consists of 

mechanisms that reduce water loss from plants, due 

to stomatal control of transpiration, and also maintain 

water uptake through an extensive and prolific root 

system (Turner et al., 2001; Kavar et al., 2007). The 

root characters such as biomass, length, density and 

depth are the main drought avoidance traits that 

contribute to final yield under terminal drought 

environments (Subbarao et al., 1995; Turner et al., 

2001). A deep and thick root system is helpful for 

extracting water from considerable depths (Kavar et 

al., 2007). 

Drought tolerance:-It represents an adaptation of 

plant physiological functions under a limited water 

supply and decrease plant cell water potential in 

order to reach a sustainable balance between water 

uptake by roots and water release by shoots.  

Glaucousness or waxy bloom on leaves helps with 

maintenance of high tissue water potential, and is 

therefore considered as a desirable trait for drought 
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tolerance (Richards et al., 1986; Ludlow and 

Muchow, 1990). Varying degrees of glaucousness in 

wheat led to increased water-use efficiency, but did 

not affect total water use or harvest index. 

Determination of leaf temperature indicated that, 

compared with non-glaucous leaves, glaucous leaves 

were 0.7 
0
C cooler and had a lower rate of leaf 

senescence (Richards et al., 1986). These authors 

suggested that a 0.5 
0
C reduction in leaf temperature 

for six hours per day was sufficient to extend the 

grain-filling period by more than three days. 

However, yield advantages are likely to be small as 

many varieties already show some degree of 

glaucousness.  

Plant can resist drought conditions through 

(Choudhary et al. 2014) 

Reduced water loss from aerial portion. 

Increased water uptake from deep layers of the soil. 

Giving more yield at low water potentials.  

Effects of drought stress on plants 

Drought stress results in stomatal closure and 

reduced transpiration rates, a decrease in the water 

potential of plant tissues, decrease in photosynthesis 

and growth inhibition, accumulation of abscisic acid 

(ABA), proline, mannitol, sorbitol, formation of 

radical scavenging compounds (ascorbate, 

glutathione, α-tocopherol etc.), and synthesis of new 

proteins and mRJNAs. 

Mostly crops are affected by the drought stress due to 

the reduction in growth and development. Water 

loving crop like rice is probably more susceptible to 

drought stress than most other plant species. In 

pulses, the stem length was decreased under water 

deficit conditions like soybean (Specht et al., 2001) 

and Vigna unguiculata (Manivannan et al., 2007a). 

The plant height was reduced up to 25% in water 

stressed citrus seedlings (Wu et al., 2008). Stem 

length was significantly affected under water stress 

vegetables like potato (Heuer & Nadler, 1995) and 

Abelmoschus esculentus (Sankar et al., 2007 & 08).  

Water stress greatly suppresses cell expansion and 

cell growth due to the low turgor pressure. Osmotic 

regulation can enable the maintenance of cell turgor 

for survival or to assist plant growth under severe 

drought conditions in pearl millet (Shao et al., 2008). 

The reduction in plant height was associated with a 

decline in the cell enlargement and more leaf 

senescence in A. esculentus under water stress (Bhatt 

& Rao, 2005). Development of optimal leaf area is 

important to photosynthesis and dry matter yield. 

Water deficit stress mostly reduced leaf growth in 

many species of plant like Populus (Wullschleger et 

al., 2005) and soybean (Zhang et al., 2004).  

The importance of root systems is also observed 

during the drought stress. A prolific root system can 

confer the advantage to support accelerated plant 

growth during the early crop growth stage and 

extract water from shallow soil layers that is 

otherwise easily lost by evaporation in legumes 

(Johansen et al., 1992). The development of root 

system increases the water uptake and maintains 

requisite osmotic pressure through higher proline 

levels in Phoenix dactylifera (Djibril et al., 2005). 

An increased root growth due to water stress was 

reported in sunflower (Tahir et al., 2002). The root 

dry weight was decreased under mild and severe 

water stress in Populus species (Wullschleger et al., 

2005). An increase in root to shoot ratio under 

drought conditions was related to ABA content of 

roots and shoots (Sharp and LeNoble, 2002). The 

root growth was not significantly reduced under 

water deficits in maize and wheat (Sacks et al., 

1997). 

Higher plant fresh as well as dry weights under 

drought conditions are desirable characters. A 

common adverse effect of drought stress on crop 

plants is the reduction in fresh and dry biomass 

production (Farooq et al., 2009). Plant productivity 

under drought stress is strongly related to the 

processes of dry matter partitioning and temporal 

biomass distribution (Kage et al., 2004). Reduced 

biomass due to drought stress was observed in almost 

all genotypes of sunflower (Tahir and Mehid, 2001). 

However, some genotypes showed better stress 

tolerance than the others. Mild water stress affected 

the shoot dry weight, while shoot dry weight was 

greater than root dry weight loss under severe stress 

in sugar beet genotypes (Mohammadian et al., 2005). 

Reduced biomass was seen in drought stressed 

soybean (Specht et al., 2001), Poncirus trifoliatae 

seedlings (Wu et al., 2008), common bean and green 

gram (Webber et al., 2006) and Petroselinum 

crispum (Petropoulos et al., 2008). A moderate stress 

tolerance in terms of shoot dry mass plants was 

noticed in rice (Lafitte et al., 2007). 

The yield components like grain number and grain 

size were decreased under pre-anthesis drought stress 

treatment in wheat (Edward & Wright, 2008). In 

some other studies on maize, drought stress greatly 

reduced the grain yield, which was dependent on the 

level of defoliation due to water stress during early 

reproductive growth (Kamara et al., 2003; 

Monneveux et al., 2006). Water stress reduces seed 

yield in soybean usually as a result of fewer pods and 

seeds per unit area. In water stressed soybean the 

seed yield was far below when compared to well-

watered control plants (Specht et al., 2001). 

Water stress for longer than 12 days at grain filling 

and flowering stage of sunflower (grown in sandy 

loam soil) was the most damaging in reducing the 

achene yield in sunflower (Mozaffari et al., 1996; 

Reddy et al., 2004), seed yield in common bean and 

green gram (Webber et al., 2006), maize 

(Monneveux et al., 2006) and Petroselinum crispum 

(Petropoulos et al., 2008). 

Drought stress produced changes in the ratio of 

chlorophyll ‘a’ and ‘b’ and carotenoids (Anjum et 

al., 2003b; Farooq et al., 2009). A reduction in 

chlorophyll content was reported in drought stressed 

cotton (Massacci et al., 2008). The chlorophyll 
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content decreased to a significant level at higher 

water deficits in sunflower plants (Kiani et al., 2008) 

and in Vaccinium myrtillus (Tahkokorpi et al., 2007). 

The foliar photosynthetic rate of higher plants is 

known to decrease as the relative water content and 

leaf water potential decreases (Lawlor and Cornic, 

2002).  

Drought stress affects the growth, dry mater and 

harvestable yield in a number of plant species, but 

the tolerance of any species to this menace varies 

remarkably. A ramified root system has been 

implicated in the drought tolerance and high biomass 

production primarily due to its ability to extract more 

water from soil and its transport to aboveground 

parts for photosynthesis. 

Wheat yield under drought stress suffer serious 

moisture deficit throughout its growth period from 

seedling to full maturity (Bilal et al. 2015). Under 

drought condition decreasing pattern was 

experienced in morphologically yield contributing 

characters like plant height (PH), grains per spike, 

spikes per plant, 1000- grain weight (TGW) in wheat 

(Kilic and Yagbasanlar 2010). Blum and Pnuel 

(1990) reported that yield and yield contributing 

traits of wheat crop were drastically decreased under 

least annual precipitation. Drought stress lead to 

reduction in number of fertile tillers per plant, grains 

per spike and 1000-grain weight (TGW) which 

ultimately cause noticeably low grain productivity. 

Relationship between plant height (PH), leaf area and 

wheat grain yield has been noticed at booting and 

anthesis phase which cause improvement in grain 

yield under water deficit condition (Gupta et al. 

2001). The decreasing graph in grain number was 

linked with reduced leaf area and lower 

photosynthesis as outcome of drought stress (Fischer 

et al. 1980). 

According to the study of Dencic et al. (2000), wheat 

is paid special attention due to its morphological 

traits during drought stress including leaf (shape, 

expansion, area, size, senescence, pubescence, 

waxiness, and cuticle tolerance) and root (dry weight, 

density, and length). Lonbani and Arzani (2011), 

claimed that the length and area of flag leaf in wheat 

increased while the width of the flag leaf did not 

significantly change under drought stress. Leaf 

extension can also be limited under water stress in 

order to get a balance between the water absorbed by 

roots and the water status of plant tissues (Passioura, 

1996). According to the study of Rucker et al. 

(1995), drought can reduce leaf area which can 

consequently lessen photosynthesis. Moreover, the 

number of leaves per plant, leaf size, and leaf 

longevity can be shrunk by water stress (Shao et al., 

2008). Singh et al. (1973) observed that leaf 

development was more susceptible to water stress in 

wheat. Root is an important organ as it has the 

capability to move in order to find water (Hawes et 

al., 2000). It is the first organ to be induced by 

drought stress (Shimazaki et al., 2005). In drought 

stress condition, roots continue to grow to find water, 

but the airy organs are limited to develop. This 

different growth response of shoots and roots to 

drought is an adaptation to arid conditions (Sharp 

and Davis, 1989; Spollen et al., 1993). To facilitate 

water absorption, root-to-shoot ratio rises under 

drought conditions (Morgan, 1984; Nicholas, 1998) 

which are linked to the ABA content of roots and 

shoots (Rane and Maheshwari, 2001). The growth 

rate of wheat roots was diminished under moderate 

and high drought conditions (Noctor and Foyer, 

1998). In wheat, the root growth was not markedly 

decreased under drought (Rao et al., 1993). Plant 

biomass is a crucial parameter which was decreased 

under drought stress in spring wheat (Wang et al., 

2005). The same outcomes were observed in 

previous studies in wheat and other crops (Watson, 

1952; Sudhakar et al., 1993). In winter wheat, the 

yield was decreased or changed under drought and, 

in contrast, the water use efficiency was boosted 

(Xue et al., 2006; Kahlown et al., 2007). 

For legumes, drought stress has adverse effects on 

total biomass, pod number, seed number, seed weight 

and quality, and seed yield per plant (Toker et al., 

2007b; Charlson et al., 2009; Khan et al., 2010; 

Toker and Mutlu, 2011; Impa et al., 2012; 

Hasanuzzaman et al., 2013; Pagano, 2014). Drought 

alone resulted in about a 40% reduction in soybean 

yield (Valentine et al., 2011). Faba bean and pea are 

known to be drought-sensitive, whereas lentil and 

chickpea are known as drought-resistant genera 

(Toker and Yadav, 2010). Singh et al. (1999) 

arranged warm season food legumes in increasing 

order of drought tolerance: soybean < black gram < 

green gram < groundnut < Bambara nut < lablab < 

cowpea. Sinclair and Serraj (1995) reported that 

legumes such as faba (broad) bean, pea and chickpea 

export amides (principally asparagine and glutamine) 

in the nodule xylem are generally more tolerant to 

drought stress than cowpea, soybean and pigeon pea, 

which export ureides (allantoin and allantoic acid). 

The symbiotic nitrogen fixation (SNF) rate in legume 

plants rapidly decreased under drought stress due to 

(i) the accumulation of ureides in both nodules and 

shoots (Vadez et al., 2000; Charlson et al., 2009), (ii) 

decline in shoot N demand, (iii) lower xylem 

translocation rate due to a decreased transpiration 

rate, and (iv) decline of metabolic enzyme activity 

(Valentine et al., 2011). Several reports have 

indicated that drought stress led to inhibition in 

nodule initiation, nodule growth and development as 

well as nodule functions (Vadez et al., 2000; 

Streeter, 2003; Valentine et al., 2011). The decrease 

in SNF under drought conditions was associated with 

the reduction of photosynthesis rate in legumes 

(Ladrera et al., 2007; Valentine et al. 2011). In many 

nodules of legumes, water stress resulted in 

stimulation of sucrose and total sugars (Gonzalez et 

al., 1995, 1998; Ramos et al., 1999; Streeter, 2003; 

Galvez et al., 2005; Valentine et al,. 2011). This was 
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consistent with a study on pea mutants, which 

showed that sucrose synthase (SS) is essential for 

normal nodule development and function (Craig et 

al., 1999; Gordon et al., 1999). Drought stress 

induces oxidative damage in legumes and this has a 

harmful effect on nodule performance and BNF 

(Arrese-Igor et al., 2011). Some reports suggest that 

nodules having an increment in enzymatic 

antioxidant defence can display a higher tolerance to 

drought/ salt stress in common bean (Sassi et al., 

2008) and chickpea (Kaur et al., 2009). In addition to 

this, Verdoy et al. (2006) reported improved 

resistance to drought stress in Medicago truncatula 

by overexpression of Δ-pyrroline- 5-carbolyate 

synthetase resulting in accumulation of high proline 

levels. 

Salinity stress 

Salinity means a condition of soil with high 

concentration of soluble salts. Salinity stress means 

that this condition disturbs the normal growth and 

development of plants which ultimately reduce final 

yield. Salinity is one of the most serious factors 

limiting the productivity of agricultural crops, with 

adverse effects on germination, plant vigour and crop 

yield.  Salinization affects many irrigated areas 

mainly due to the use of brackish water. Worldwide, 

more than 45 million hectares of irrigated land have 

been damaged by salt, and 1.5 million hectares are 

taken out of production each year as a result of high 

salinity levels in the soil (Munns & Tester, 2008). 

High concentration of salts effect plants mainly by 

creating two conditions   

High concentration of salts in soil solution: It creates 

difficulty to plant roots to extract water from soil 

solution. It also affect the cell growth and 

development due to that plant suffer from the salt 

stress. It causes osmotic stress which affects the rate 

of shoot growth.   

High concentration of salts with in plant: This high 

salt condition toxic for plant. It takes time to 

accumulate salts inside the plants and after that it will 

affect plant functions adversely.     

Response of plants to salinity stress: - Plant species 

vary in how well they tolerate salt-affected soils. 

Some plants will tolerate high levels of salinity while 

others can tolerate little or no salinity. In cereals rice 

is more sensitive to salinity and barley is the most 

tolerant crop. 

Osmotic adjustment: - Osmotic adjustment in 

plants subjected to salt stress can occur by the 

accumulation of high concentrations of either 

inorganic ions or low molecular weight organic 

solutes. The compatible osmolytes generally found in 

higher plants are low molecular weight sugars, 

organic acids and nitrogen containing compounds 

such as amino acids, amides, amino acids, proteins 

and quaternary ammonium compounds. The growth 

of salt-stressed plants is mostly limited by the 

osmotic effect of salinity, irrespective of their 

capacity to exclude salt that results in reduced 

growth rates and stomatal conductance (Fricke et al., 

2004 & James et al., 2008). In fact, osmotic tolerance 

involves the plant’s ability to tolerate the drought 

aspect of salinity stress and to maintain leaf 

expansion and stomatal conductance (Rajendran et 

al., 2009). At the end, while the mechanisms 

involved in osmotic tolerance related to stomatal 

conductance, water availability and therefore to 

photosynthetic capacity to sustain carbon skeletons 

production to meet the cell's energy demands for 

growth have not been completely unraveled, it has 

been demonstrated that the plant’s response to the 

osmotic stress is independent of nutrient levels in the 

growth medium (Hu et al., 2007). 

Salt secretion: - In many halophytes, another 

important salt resistance mechanism is salt 

secretion, which regulates salt tolerance by 

secreting salt (especially NaCl) through salt glands 

in the leaves and by modulating the internal ion 

concentrations to a lower level. Na
+
 exclusion by 

leaves ensures that Na does not accumulate to toxic 

concentrations within leaves. In the majority of plant 

species grown under salinity, Na
+
 appears to reach a 

toxic concentration before Cl
−
 does, and so most 

studies have concentrated on Na
+
 exclusion and the 

control of Na
+
 transport within the plant (Munns & 

Tester, 2008). Therefore, another essential 

mechanism of tolerance involves the ability to reduce 

the ionic stress on the plant by minimizing the 

amount of Na
+
 that accumulates in the cytosol of 

cells, particularly those in the transpiring leaves. This 

process, as well as tissue tolerance, involves up- and 

down regulation of the expression of specific ion 

channels and transporters, allowing the control of 

Na
+
 transport throughout the plant (Munns & Tester, 

2008 & Rajendran et al.  2009). Na
+
 exclusion from 

leaves is associated with salt tolerance in cereal crops 

including rice, durum wheat, bread wheat and barley 

(James et al., 2011). Exclusion of Na
+ 

from the 

leaves is due to low net Na
+
 uptake by cells in the 

root cortex and the tight control of net loading of the 

xylem by parenchyma cells in the stele (Davenport et 

al., 2005). Na
+ 

exclusion by roots ensures that Na
+
 

does not accumulate to toxic concentrations within 

leaf blades. A failure in Na
+
 exclusion manifests its 

toxic effect after days or weeks, depending on the 

species, and causes premature death of older leaves 

(Munns & Tester, 2008). 

Salt compartmentalization: - The capacity for ion 

compartmentalization among different tissues and 

cells is the key mechanism regulating salt tolerance 

in plants. Tolerance requires compartmentalization 

of Na
+
 and Cl

−
 at the cellular and intracellular level 

to avoid toxic concentrations within the cytoplasm, 

especially in mesophyll cells in the leaf. Many 

processes operate to enable plants to balance Na
+
 

concentrations in their different organs, cell types 

and subcellular compartments to optimize growth 

and development under the given environmental 

conditions. Generally, the primary tissue in which 

https://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/salinity-stress-and-salt-tolerance#B53
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Na
+
 toxicity is manifested is the mature leaf (Munns, 

2002). The toxicity of Na
+
 at agronomically relevant 

Na
+
 concentrations has often been associated with 

the extent of Na
+ 

accumulation in leaves (Munns, 

1993).  

Effects of salinity stress on plants: In cereals, 

salinity reduces the number of tillers due to that total 

leaf area is reduced and ultimately final yield is 

reduced. In pulses, size of leaves and number of 

branches reduced due to salinity. The decreased rate 

of leaf growth after an increase in soil salinity is 

primarily due to the osmotic effect of the salt around 

the roots. A sudden increase in soil salinity causes 

leaf cells to lose water, but this loss of cell volume 

and turgor is transient. Within hours, cells regain 

their original volume and turgor owing to osmotic 

adjustment, but despite this, cell elongation rates are 

reduced (Passioura and Munns, 2000). Over days, 

reductions in cell elongation and also cell division 

lead to slower leaf appearance and smaller final size. 

Cell dimensions change, with more reduction in area 

than depth, so leaves are smaller and thicker. The 

most dramatic and readily measurable whole plant 

response to salinity is a decrease in stomatal aperture. 

Stomatal responses are undoubtedly induced by the 

osmotic effect of the salt outside the roots. Salinity 

affects stomatal conductance immediately, firstly and 

transiently owing to perturbed water relations and 

shortly afterward owing to the local synthesis of 

ABA (Fricke et al., 2004). 

Seed germination and seedling growth of crops under 

saline conditions is generally affected due to high 

osmotic pressure of the solution. Salinity affects time 

and rate of germination in crops (Mudgal, 2004). 

Salinity is a major abiotic stress limiting 

germination, plant vigour and yield of agricultural 

crops especially in arid and semi-arid regions 

(Munns and Tester, 2008; Abdel Latef and Chaoxing, 

2011; Aggarwal et al., 2012; Ahmad and Prasad 

2012a, 2012b; Porcel et al., 2012; Kapoor et al., 

2013). Approximately 20% of irrigated land 

worldwide currently is affected by salinity, 

particularly in arid and desert lands, which comprise 

25% of the total land area of our planet (Yeo, 1999; 

Rasool et al., 2013). High salinity affects plants in 

several ways: water stress, ion toxicity, nutritional 

disorders, oxidative stress, alteration of metabolic 

processes, membrane disorganization, reduction of 

cell division and expansion, and genotoxicity 

(Hasegawa et al., 2000, Munns, 2002; Zhu, 2007; 

Shanker and Venkateswarlu, 2011; Gursoy et al., 

2012; Djanaguiraman and Prasad, 2013). Together, 

these effects reduce plant growth, development and 

survival (Rasool et al., 2013; Hameed et al., 2014). 

Food legumes are relatively salt sensitive compared 

with cereal crops, thus farmers do not consider 

growing food legumes in salinized soils (Saxena et 

al., 1993; Toker and Mutlu, 2011; Egamberdieva and 

Lugtenberg, 2014). The sensitivity in legumes may 

be due to salt affecting bacterial activity and nitrogen 

fixation (Materne et al., 2007; Toker et al., 2007a; 

Toker and Mutlu, 2011; Egamberdieva and 

Lugtenberg, 2014). Salt stress led to reduction in 

shoot growth of soybean, chickpea, pea, faba bean 

and mung bean plants (Elsheikh and Wood, 1990, 

1995; Delgado et al., 1994; Hussain et al., 2011; 

Saha et al., 2010; Rasool et al., 2013). The response 

of BNF in contrasting tolerance lines of Medicago 

ciliaris to salt stress did not show a clear trend in 

relation to nodule carbohydrate metabolism (Ben- 

Sala et al., 2009). Nodules of common bean (Sassi et 

al., 2008) and chickpea (Kaur et al., 2009) display a 

higher tolerance to osmotic/salt stress due to 

increased enzymatic antioxidant defence (Arrese-

Igor et al., 2011). Salinity stress significantly 

decreased the activities of nitrogenase and phosphate 

enzymes (acid and alkaline) in faba bean (Rabie et 

al., 2005; Hussain et al., 2011). The effect of salinity 

stress on growth and some metabolic activities of 

mung bean were investigated by Saha et al. (2010). 

They concluded that salinity stress suppressed the 

early growth of mung bean seedlings. Salinity also 

damaged the photosynthetic machinery by causing 

reduced chlorophyll content, and also induced the 

accumulation of proline, malondialdehyde (MDA) 

and H2O2 in roots and leaves of mung bean plants. 

Furthermore, salinity stress caused increments in the 

activity of superoxide dismutase (SOD), catechol 

peroxidase (CPX) and catalase (CAT) in root and 

leaves of mung bean plants. Recently, Rasool et al. 

(2013) reported that tolerance of chickpea genotypes 

(SKUA-06 and SKUA-07) to salinity seems to be 

related to the efficiency of the enzymatic 

antioxidants SOD, CAT, ascorbate peroxidase (APX) 

and glutathione reductase (GR) against accumulation 

of reactive oxygen species (ROS), which would 

maintain the redox homeostasis and integrity of 

cellular components.       

Nutrient disturbances under salinity reduce plant 

growth by affecting the availability, transport, and 

partitioning of nutrients. However, salinity can 

differentially affect the mineral nutrition of plants. 

Salinity may cause nutrient deficiencies or 

imbalances, due to the competition of Na
+
 and Cl

–
 

with nutrients such as K
+
, Ca2

+
, and NO3

–. 
Under 

saline conditions, a reduced plant growth due to 

specific ion toxicities (e.g. Na
+
 and Cl

–
) and ionic 

imbalances acting on biophysical and/or metabolic 

components of plant growth occurs (Grattan and 

Grieves, 1999). Increased NaCl concentration has 

been reported to induce increases in Na and Cl as 

well as decreases in N, P, Ca, K and Mg level in 

fennel (Abd El-Wahab, 2006); Trachyspermum ammi 

(Ashraf and Orooj, 2006); peppermint and lemon 

verbena(Tabatabaie and Nazari, 2007), Matricaria 

recutita (Baghalian et al., 2008), Achillea 

fragratissima (Abd EL-Azim and Ahmed, 2009).    
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