

EFFECT OF PLANT GROWTH REGULATORS ON GROWTH PARAMETERS OF SWEET POTATO (*IPOMOEA BATATAS* (L.) LAM.)

Sibabrata Behera*, C.N. Hanchinamani, H.P. Hadimani, Revanappa, S. Meti and S. M. Prasanna

College of Horticultural, Bagalkot

Received-09.05.2018, Revised-24.05.2018

Abstract: A field experiment was carried out during *kharif* 2016-17 at Kittur Rani Channamma College of Horticulture, Arabhavi (Karnataka) to study the effect of growth regulators on growth parameters of sweet potato [*Ipomoea batatas* (L.) Lam.]. The results revealed that the spraying of GA_3 @ 100 ppm (T_3) showed significantly highest Vine length (125.50 cm), Petiole length (26.83 cm) and Significantly highest leaf area (87.43 cm^2) was recorded with the combination of GA_3 100 ppm plus CCC 250 ppm (T_{10}), which was on par with GA_3 at 100 ppm (85.18 cm^2),

Keywords: Sweet potato, Plant growth regulators, Growth parameters

INTRODUCTION

Sweet potato [*Ipomoea batatas* (L.) Lam.] is an important tuber crop belonging to the family Convolvulaceae. It is an important starchy vegetable crop in tropics and sub tropics. It is mainly grown as one of the supplementary food crops to meet the requirements of carbohydrates and also to provide raw materials for manufacture of starch, alcohol, lactic acid, vinegar etc. The nutrition of sweet potato in human diet is quite appreciable since, it provides high quantity of starch, substantial amount of vitamins (A, B and C) (Hung *et al.* 1999), minerals and trace elements compared to cereals. It would be a good substitute for rice and wheat (Thakur, 1975). It also contains considerable amount of beta-carotene (5.40 to 20.00 mg/100g) and sugar content. In India sweet potato is grown utilizing the monsoon rains during *Kharif* (June-July) and with supplemented irrigation during *Rabi* (October-November). In India, sweet potato is being cultivated in almost all the states with an area of 111 ha, with a production of 1450 metric tonnes and productivity of 10.4 MT/ha (Anonymous, 2015). India accounts for about 68% of the total production of South Asia followed by 27% in Bangladesh and about 5% in Sri Lanka. In India, Sweet potato is cultivated mainly in Odisha, Uttar Pradesh, West Bengal, Bihar, Karnataka, Andhra Pradesh, Tamil Nadu and Kerala. The role of plant growth substances in the physiology of plant is one of the most interesting chapters in the science. The plant growth substances are organic compounds, other than nutrients which in small concentration influence the physiological processes of plants. They have been used for various beneficial effects such as promoting plant growth, increasing number of flowers, fruit size and inducing early and uniform fruit ripening. GA_3 has a major effect on growth and development activating the entire metabolic activities of many crops. GA_3 is one of the important growth regulators that stimulate vegetative growth (Singh and Rajodia, 2001), yield

(Khan *et al.*, 2002) and sugar content (Babu, 2000). Cycocel (CCC) a new quartemary ammonium growth retardant is the most effective. It interferes with many of the metabolic activities. Reduction of plant height with subsequent increase in branching and yield by the application of CCC was reported by Devi (2002). Increase in chlorophyll content (Volkova, 1985), yield (Amutha and Rajendran, 2001), (Shrivastava *et al.*, 2001) was also reported due to CCC application.

MATERIALS AND METHODS

The field experiment was conducted at the Kittur Rani Channamma College of Horticulture, Arabhavi, Gokak Taluk, Belgaum district of Karnataka state during the *Kharif* -2016. Arabhavi is situated in northern dry zone of Karnataka state at $16^0 13' 39.6''$ north latitude, $74^0 50' 13.5''$ east longitude and at an altitude of 612.03 m above the mean sea level. Arabhavi, which lies in Zone-3 of Region-2 of agro-climatic zones of Karnataka, is considered to have the benefit of both South-West and North-East monsoons. The average rainfall of this area is about 530 mm, distributed over a period of five to six months (May-October) with peak (226.10 mm) during September. The area receives water from Ghataprabha Left Bank Canal from mid-July to mid-March. During the experimental period, the mean minimum temperature varied from 11.80^0 C (December 2016) to 23^0 C (August 2016), whereas the mean maximum temperature varied from 26.10^0 C (December 2016).

The experiment was laid out in Randomized block design and replicated thrice. Vine cuttings of 15-20 cm length were planted at a spacing of 60 x 30 cm and 5-7 cm depth. Standard recommended cultural practices were followed during the entire crop growth period. The experiment consisted of different PGR concentrations (GA_3 @ 25, 50 and 100 ppm, CCC @ 100, 250 and 300 ppm and IBA @ 100 and 200 ppm and control). In each treatment, the plants were

*Corresponding Author

sprayed twice at 45 and 60 days after transplanting. The data on vegetative growth parameters were recorded and analyzed statistically. The experimental data collected on various growth, yield and quality aspects were subjected to Fisher's method of analysis of variance (ANOVA) as per methods outlined by Panse and Sukhatme (1967). The critical difference (CD) was calculated wherever the 'F' test was found significant. The data were analyzed and presented with the level of significance at 5 per cent.

RESULTS AND DISCUSSION

Fresh vine length

It is evident from the data that the vine length was significantly influenced by growth regulators and the treatments differed significantly among themselves at various growth stages except at 30 DAP and presented in Table -1.

Among different treatments, GA_3 at 100 ppm (T_3) was recorded highest vine length (125.50 cm), which was on par with combination of GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}) (119.00 cm), combination of GA_3 at 50 ppm plus IBA at 200 ppm (T_9) (116.17 cm) and IBA at 200 ppm (T_8) (108.33 cm), whereas minimum vine length (73.17 cm) was observed in control (T_{11}) at 60 DAP. Vine length noticed at 90 DAP ranged from 113.10 to 169.83 cm. Significantly highest vine length (169.83 cm) was recorded in GA_3 at 100 ppm (T_3), which was on par with GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}) (154.95 cm) and combination of GA_3 at 50 ppm plus IBA at 200 ppm (T_9) (146.75 cm). In control (T_{11}) the lowest vine length (113.10 cm) was observed.

The trend observed in respect of vine length at harvest (120 DAP) of crop was similar to those observed at earlier stages. Significantly highest vine length (221.72 cm) was recorded in GA_3 at 100 ppm (T_3), which was on par with combination of GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}) (213.52 cm) and combination of GA_3 at 50 ppm plus IBA at 200 ppm (T_9) (205.48 cm), whereas minimum vine length (158.09 cm) was observed in control. The increase in vine length by GA_3 treatment may be due to cell division. GA_3 has been found to increase the cell wall plasticity and also thus creating water diffusion pressure deficit, which result in water uptake, thereby causing cell elongation followed by cell division as suggested by Randhawa (1971). However, the response to GA_3 in terms of cell division and cell elongation depends up on nature of tissues and the balance of the different kinds of growth substances. Similar responses of GA_3 were earlier reported by Tohamy et al. (2015) in sweet potato, Natesh et al. (2005) in chilli, Sengupta et al. (2008) in ginger.

Petiole length (cm)

Significantly higher petiole length (26.83 cm) was recorded in GA_3 at 100 ppm (T_3), which was on par with treatment combination of GA_3 at 100 ppm plus CCC at 250 ppm (23.86 cm) (T_{10}), combination of

GA_3 at 50 ppm plus IBA at 200 ppm (T_9) (23.41 cm). The minimum petiole length (18.25 cm) was observed in control (T_{11}).

Petiole length recorded at 90 DAP ranged from 21.12 to 29.86 cm. Significantly highest petiole length (29.86 cm) was recorded in GA_3 at 100 ppm (T_3), which was on par with treatment combination of GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}) (27.98 cm), combination of GA_3 at 50 ppm plus IBA at 200 ppm (T_9) (26.92 cm). In control (T_{11}) the lowest petiole length (21.12 cm) was observed. The trend observed in respect of petiole length at harvest (120 DAP) of crop was similar to those observed at earlier stages. Significantly highest petiole length (31.99 cm) was recorded in GA_3 at 100 ppm (T_3), which was on par with combination of GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}) (29.54 cm) and whereas minimum petiole length (24.38 cm) was observed in control (T_{11}). The promotion of growth either in terms of increase the petiole length due to GA_3 has been thought to be by increasing plasticity of the cell wall followed by hydrolysis of starch to sugars which lowers the water potential of cell, resulting in the entry of water into the cell causing elongation. These osmotic driven responses under the influence of gibberellins might have attributed to increase in photosynthetic activity, accelerated translocation and efficiency of utilizing photosynthetic products, thus resulting in increased cell elongation and rapid cell division in the growing portion (Sargent, 1965). These results are in conformity with the findings of Singh and Choudhary (1989) in watermelon and Rao et al. (2017) in sweet potato (Table 2).

Leaf area (cm^2)

Significantly higher leaf area (77.20 cm^2) was recorded with combination of GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}), which was on par with single treatment of GA_3 at 100 ppm (73.50 cm^2), combination of GA_3 at 50 ppm plus IBA at 200 ppm (T_9) (71.15 cm^2) and IBA at 200 ppm (T_8) (68.30 cm^2). The minimum leaf area (61.42 cm^2) was resulted in control (T_{11}) at 60 DAP. Significantly highest leaf area (87.43 cm^2) was recorded with the combination of GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}), which was on par with GA_3 at 100 ppm (85.18 cm^2), combination of GA_3 at 50 ppm plus IBA at 200 ppm (T_9) and GA_3 at 50 ppm (T_2). In control (T_{11}) the lowest leaf area (69.15 cm^2) was observed at 90 DAP.

The trend observed in respect of leaf area at harvest (120 DAP) of crop was similar to those observed at earlier stages. Combination of growth regulators GA_3 at 100 ppm plus CCC at 250 ppm (T_{10}), recorded significantly highest leaf area (98.48 cm^2), followed by GA_3 at 100 ppm (T_3) (93.60 cm^2), whereas minimum leaf area (78.11 cm^2) was observed in control.

The promotion of growth either in terms of increase the leaf area due to GA_3 has been thought to be by

increasing plasticity of the cell wall followed by hydrolysis of starch to sugars which lowers the water potential of cell, resulting in the entry of water into the cell causing elongation. These results are in conformity with the findings of Singh and Choudhary (1989) in watermelon, Emongor (2007) and Chatterjee and Choudhuri (2012) in cowpea. The highest diameters of fresh tubers (7.42 cm) was recorded in combination of GA₃ at 100 ppm plus

CCC @ 250 ppm (T₁₀), which was on par with single treatment of CCC at 300 ppm (T₆) (7.27 cm). Whereas the lowest diameters of fresh tubers (3.78 cm) was reported in control (T₁₁). Similar response of CCC increase the girth of root tuber was earlier reported by Abdul and Kumaran (1980), Tohamy et al. (2015), Shee (1983) in sweet potato, Mohamed and Anbu (1996) in radish and Jirali et al. (2008) in ginger.

Table 1. Vine length (cm) of sweet potato at different stages of growth as influenced by different plant growth regulators

Sl. No.	Treatments	Vine length (cm)			
		30 DAP	60 DAP	90 DAP	120 DAP
1.	T ₁ - GA ₃ @ 25 ppm	51.12	92.17	127.29	173.33
2.	T ₂ - GA ₃ @ 50 ppm	50.02	100.51	138.02	187.47
3.	T ₃ - GA ₃ @ 100 ppm	50.42	125.50	169.83	221.72
4.	T ₄ - CCC @ 200 ppm	49.00	106.83	145.24	191.86
5.	T ₅ - CCC @ 250 ppm	48.45	95.67	132.17	183.75
6.	T ₆ - CCC @ 300 ppm	47.30	90.83	126.08	174.40
7.	T ₇ - IBA @ 100 ppm	51.31	93.73	131.38	175.83
8.	T ₈ - IBA @ 200 ppm	47.28	108.33	143.67	185.09
9.	T ₉ - Combination of GA ₃ @ 50 ppm + IBA @ 200 ppm	50.11	116.17	146.75	205.48
10.	T ₁₀ - Combination of GA ₃ @ 100 ppm + CCC @ 250 ppm	47.20	119.00	154.95	213.52
11.	T ₁₁ - Control	54.35	73.17	113.10	158.09
	S.Em\pm	2.90	7.43	8.80	8.58
	C. D. at 5%	N.S	21.94	25.97	25.31
	C.V	10.11	12.63	10.97	7.89

DAP = Days after planting

Table 2. Petiole length (cm) of sweet potato at different stages of growth as influenced by different plant growth regulators

Sl. No.	Treatments	Petiole length (cm)			
		30 DAP	60 DAP	90 DAP	120 DAP
1.	T ₁ - GA ₃ @ 25 ppm	12.67	19.62	25.19	27.42
2.	T ₂ - GA ₃ @ 50 ppm	12.49	22.97	26.08	27.87
3.	T ₃ - GA ₃ @ 100 ppm	13.23	26.83	29.86	31.99
4.	T ₄ - CCC @ 200 ppm	12.88	22.53	25.82	27.76

5.	T ₅ - CCC @ 250 ppm	13.11	20.85	25.26	27.49
6.	T ₆ - CCC @ 300 ppm	12.45	19.34	22.87	25.70
7.	T ₇ - IBA @ 100 ppm	14.12	20.09	24.00	25.79
8.	T ₈ - IBA @ 200 ppm	13.55	21.51	26.01	26.23
9.	T ₉ - Combination of GA ₃ @ 50 ppm + IBA @ 200 ppm	12.26	23.41	26.92	28.24
10.	T ₁₀ - Combination of GA ₃ @ 100 ppm + CCC @ 250 ppm	13.60	23.86	27.98	29.54
11.	T ₁₁ - Control	12.60	18.25	21.12	24.38
	S.Em±	1.03	1.38	1.52	1.25
	C. D. at 5%	N.S	4.09	4.50	3.70
	C.V.	13.82	11.05	10.34	7.91

DAP = Days after planting

Table 3. Leaf area (cm²) of sweet potato at different stages of growth as influenced by different plant growth regulators

Sl. No.	Treatments	Leaf area (cm ²)			
		30 DAP	60 DAP	90 DAP	120 DAP
1.	T ₁ - GA ₃ @ 25 ppm	47.90	64.15	75.03	83.32
2.	T ₂ - GA ₃ @ 50 ppm	45.12	67.08	78.17	85.10
3.	T ₃ - GA ₃ @ 100 ppm	52.73	73.50	85.18	93.60
4.	T ₄ - CCC @ 200 ppm	55.30	67.32	76.52	84.02
5.	T ₅ - CCC @ 250 ppm	47.51	65.88	74.25	83.18
6.	T ₆ - CCC @ 300 ppm	52.19	64.13	72.16	80.34
7.	T ₇ - IBA @ 100 ppm	48.17	65.49	72.53	80.26
8.	T ₈ - IBA @ 200 ppm	45.36	68.30	75.14	82.95
9.	T ₉ - Combination of GA ₃ @ 50 ppm + IBA @ 200 ppm	52.14	71.15	81.72	90.55
10.	T ₁₀ - Combination of GA ₃ @ 100 ppm + CCC @ 250 ppm	47.57	77.20	87.43	98.48
11.	T ₁₁ - Control	48.07	61.42	69.15	78.11
	S.Em±	3.51	2.96	3.54	4.02
	C. D. at 5%	N.S	8.75	10.45	11.87
	C. V	12.35	7.58	7.97	8.15

DAP: Days after planting

REFERENCES

Amutha, R. and Rajendran, C. (2001), Effect of growth regulating chemicals on yield and quality of Thompson seedless grapes. *Res. on crops.*, 2(3): 332 - 337.

Anonymous, (2015), Indian Horticulture Database, National Horticultural Board.

Babu, N. (2000), Effect of NAA, IAA and GA₃sprays on growth, yield and quality of papaya (*Carica papaya* L.) fruit under foothills of Nagaland. *New Agric.*, 11(1.2): 71-75.

Banerjee, N. C. and Das, T. K. (1984), Effect of plant growth regulators on growth and tuber yield of potato. *South Indian Hort.*, 32(2): 75-77.

Chatterjee, R. and Choudhuri, P. (2012), Influence of foliar application of plant growth promoters on growth and yield of vegetable cow pea (*Vignaunguiculata* L.). *J. Crop and Weed.*, 8(1): 158-159.

Devi, D. (2002), Eco-Physiological studies on germination, growth, metabolism and yield of Sunflower (*Helianthus annus*L.). Ph.D. Thesis, Guwahati University, Assam.

Emongor, V. E. (2007), Gibberellic Acid (GA₃) influence on vegetative growth, nodulation and yield of cowpea (*Vignaunguiculata* L.). *J. Agron.*, 6(4): 509-517.

Hugar, A. H. and Nalawadi, U. G. (1999), Effect of growth regulators on morphological characters, flower production and seed yield of Gaillardia. *Karnataka J. Agric. Sci.*, 12(1- 4): 226-29.

Jirali, D. I., Hiremath, S. M., Chetti, M. B. and Patil, S. A. (2008), Studies on yield components, yield and quality attributes as affected by growth regulators in Turmeric. *J. Eco-friendly Agric.*, 3(2): 119-122.

Khan, N., Ansari, M., Mir, R. and Samiullah, (2002), Effect of phytohormones on growth and yield of Indian mustard. *Indian J. Pl. Physiol.*, 7(1): 75-78.

Kumar, A., Singh, B. P. and Katiyar, H. (2012), Effect of foliar application of plant growth regulators on potato tubers quality. *Progressive Hort.*, 44(2): 299-303.

Mohamed, Y. G. and Anbu, S. (1996), Effect of cycocel on growth and tuberisation of radish (*Raphanussativus*). *South Indian Hort.*, 44: 49-51.

Natesh, N., Vyakaranahal, B. S., Shekhar Gouda, M. and Deshpande, V. K. (2005), Influence of growth regulators on growth, seed yield and quality of chilli cv. Byadgikaddi. *Karnataka J. Agric. Sci.*, 18(1): 36-38.

Panse, V. G. and Sukhatme, P. V. (1985), *Statistical methods for agricultural workers*. Indian Council of Agricultural Research, New Delhi, India.

Randhawa, G. S. (1971), Use of plant growth regulators and gibberellins in horticulture. I.C.A.R Technical bulleting (A G R I C) No. 34. ICAR publishers.

Rao, G. K., Ashok, P., Swami, D. V. and Sasikala, K. (2017), Influence of plant growth regulators on growth, root tuber yield and quality of orange flesh sweet potato (*Ipomoea batatas* (L.) Lam.) varieties. *Int. J. Curr. Microbiol. App. Sci.*, 6(6): 2017-2025.

Sargent, J. A. (1965), The penetration of growth regulators into leaves. *Ann. Review Pl. Physiol.*, 16(1): 1-12.

SeemaSarkar, C. M., 2008, Interaction between GA3 and CCC on yield and quality of sweet potato *International Journal of Plant Sciences*. 3(2): 477-479.

Sengupta, D. K., Maity, T. K. and Dasgupta, B. (2008), Effect of growth regulators on growth and rhizome production of ginger (*Zingiberofficinale*Rosc.) in the hilly region of Darjeeling district. *J. Crop and Weed.*, 4(2):10-13.

Shee, B. W. (1983), Effect of Plant growth regulators SADH and CCC on the growth and yield of tuberous roots of sweet potatoes grown in hot, rainy and long photoperiod seasons. *J. Agric. Assoc. China*. 122: 24-34.

Shrivastava, T., Namdeo, K. N., Monoj, K. M., Dwivedi, R. K. and Tiwari, R. K. (2001), Effect of plant growth regulators on growth, yield and nutrient uptake by Chick pea (*Cicer arietinum*L.). *Indian J. Pl. physiol.*, 18(1): 135-139.

Singh, A.R and Choudary, B. (1989), Differential responses of three genera of cucurbits to boron and plant growth regulators. *Indian Journal of Horticulture*, 46 (1):215-221.

Singh, M. and Rajodia, R. B. (2001), Effect of gibberellic acid on growth and yield attributes of radish varieties. *Crop Res.*, 21(2): 174-177.

Thakur, C. (1975), Scientific crop production. Sweet potato metropolitan Book Co. Pvt. Ltd., pp. 122-126.

Tohamy, E. W. A., Abagy, E. H. M., Badr, M. A., Abou-hussein, S. D., Helmy, Y. I. and Shafeek, M. R. (2015), Effects of yeast extract and GA₃ on water status, growth, productivity and quality of sweet potato grown in sandy soils. *Int. J. Environment*, 4(4): 256-261.

Volkova, R. I., Budhykina, N. P. and Prusakova, L. D. (1985), Effect of hydrel and chlorocholine chloride on pigment content and auxin activity in tomato plants in relation to cold resistance. *FiziolRast.*, 32(3): 579-584.

