

VARIABLE SALINITY TOLERANCE IN *ANABAENA* SP. BHUAR002 THROUGH REGULATION OF ION UPTAKE AND PRODUCTION OF OSMOPROTECTANT

Aparna Rai*

Department of Botany, Banaras Hindu University (BHU), Varanasi 221005, India
Email: aparna.rai82@gmail.com

Received-11.01.2018, Revised-25.01.2018

Abstract: Filamentous, heterocyst-forming, diazotrophic cyanobacterium *Anabaena* sp. BHUAR002 was isolated from usar (saline) land near Banaras Hindu University campus, and grown routinely on Allen Arnon medium. The growth of cyanobacterium was measured at various concentrations (upto 1000 mM) of different salt combinations, NaCl, NaCl+Na₂CO₃ (1:1) and NaCl+Na₂SO₄ (1:1) and found that the cyanobacterium tolerated the salinity of 500 mM NaCl, 700 mM NaCl+Na₂CO₃ and 1000 mM NaCl+Na₂SO₄, indicating that elevated carbonate and sulphate support the growth of cyanobacterium under salinity and increase the tolerance range. Natural abundance ¹³C-NMR spectra chemical shifts showed sucrose as the osmoticum synthesized in NaCl and NaCl+Na₂CO₃ (1:1). However, synthesis of sucrose was not found in case of NaCl+Na₂SO₄ (1:1). Intracellular Na⁺ concentration increases under different salt concentrations as compared to control. K⁺ concentration also increases with increase of different salt concentration as compared to control is also an indication of acclimatization against salt stress; this type of ionic ratio was found in all three salt stress conditions. Intracellular Cl⁻ concentration was found minimum in case of NaCl+Na₂SO₄ as compared to NaCl and NaCl+Na₂CO₃ incubated cells.

Keywords: Intracellular ion concentration, Osmotic, Salinity, Tolerance range

INTRODUCTION

As organisms originated millions of years ago (Brock 1973) have passed successfully through several conditions generated by the environment on the earth. Cyanobacteria shows diverse stress response and offer an excellent prospect for conducting studies particularly the ability of heterocystous cyanobacteria to tolerate stresses as deficiency of nutrient, salinity and temperature (Apte et al. 1987; Aparna Rai 2015). Salt tolerance have been shown by many cyanobacteria (Thomas and Apte 1984), salt tolerance enhanced by presence of certain nitrogenous compounds in the growth medium (Reddy et al. 1989) and all treatments which inhibit Na⁺ influx (such as alkaline pH, K⁺ above 25 mM, NO₃⁻, NH₄⁺) have shown an enhancement in the salt tolerance for brackish-water and also for the freshwater cyanobacterium (Apte et al. 1987). It has also found that cyanobacteria get acclimatized to salt stress by ion regulation and osmoprotectants formation (Pade and Hagemann 2014). Similar studies were conducted on plants where it shows that plant adopts SOS pathway for regulation of ion uptake (Gupta and Huang 2014) during salinity stress. Salt adaptation by freshwater cyanobacteria is composed of several mechanisms. Studies on the N₂ fixing cyanobacterium *Nostocmuscorum* grown at high NaCl concentrations revealed stimulation of photosynthetic activity and sucrose accumulation (E Blumwald and Telor 1982), photoautotrophic nitrogen-fixing cyanobacteria in general exhibits considerable tolerance to salt or osmotic stress (Thomas and Apte 1984). One of the

cyanobacterial approaches for the problem of saline soil was proposed in the 1950's, wherein cyanobacteria fixing nitrogen from the atmosphere naturally were employed for the reclamation of saline/alkaline 'usar' soil typical of certain North Indian States (Singh 1950, 1961).

MATERIAL AND METHOD

Isolation and purification of cyanobacteria- Surface soils (3-4 inch of the upper layer) from the usar fields of the nearby locality were collected and brought to the laboratory. Soil samples were ground to the powder and mixed. A known amount of soil samples (5 g) was taken in an autoclaved tube and added sterile double distilled water (5 mL). The samples were mixed thoroughly by shaking and allowed to stand for half an hour. After settling the soil particles, the supernatant was used to inoculate in combined nitrogen-free agar plates of Allen Arnon (AA) medium (Allen and Arnon 1955) containing different concentrations of NaCl (100 mM, 300 mM, 500 mM, 700 mM and 1000 mM) to isolate nitrogen-fixing cyanobacterial forms. Plates were placed in a culture room set at 28 ± 1°C, illuminated with daylight fluorescent lamps at photon fluence rate of 95 μmol m⁻² s⁻¹, under 16:8 h light-dark period to allow the growth of cyanobacteria. After a week cyanobacterial colonies appeared on the plates of 100 – 500 mM NaCl. However, no colonies appeared at 700 and 1000 mM NaCl containing plates. Since our interest was to isolate salt tolerant cyanobacterial forms, therefore, individual colonies appearing on plates of 500 mM NaCl were picked up

*Corresponding Author

and subcultured in liquid medium using standard microbiological techniques. A single strain of cyanobacterium was obtained in unicellular culture condition. Morphological characters (filament sheath, length, width, shape and size of vegetative cells and heterocysts, etc.) and keys of Desikachary (Desikachary 1959) were used to identify the cyanobacterial strain as *Anabaena* sp. Further 16s ribosomal RNA partial sequencing of isolated DNA and the sequences were submitted in NCBI where it is identified as new species named *Anabaena* sp. BHUAR002 (Accession no. bankit1353506 HM235817) (A Rai and Rai 2011). Axenic nature of isolated cyanobacteria was ensured periodically by plating the diluted cultures on caseinate-glucose agar AA medium (free of combined nitrogen) supplemented with (w/v) casamino acids (0.05%), glucose (0.5%) and agar (1%), and incubated under standard growth conditions. To eliminate bacterial contamination, if any, clean microcolonies were transferred to AA liquid medium and allowed to grow under standard growth conditions.

Design of simulated saline condition- Salt of 100mM, 300mM, 500mM, 700mM and 1000mM concentrations of NaCl and salt mixture of these concentrations using combinations of either two salts NaCl+Na₂CO₃ and NaCl+Na₂SO₄, mixed at a 1:1 molar ratio (Yang et al. 2007), for the salt treatment concentrations referred to the total salt concentrations of NaCl+Na₂CO₃ or NaCl+Na₂SO₄. Therefore, in 100mM solution, a mixture of 50mM NaCl and 50mM Na₂CO₃ would result in total ion concentrations of 150mM Na+50mM Cl+50mM CO₃. For 100mM NaCl+Na₂SO₄ solution, a mixture of 50mM NaCl and 50mM Na₂SO₄ result in total ion concentrations of 150mM Na+50mM Cl+50mM SO₄ like this the five concentration treatments for each pair were applied.

Stress treatment- Exponentially growing cyanobacterial cells were subjected to stress treatment by inoculating it at 20:1 (20 is the medium and 1 is inoculum) ratio on different concentrations of salts, different combinations of salts and also in control.

Growth estimation - Salt tolerance in cyanobacteria has been studied mainly for their ability to tolerate different salt levels. Very few studies describe their ability to tolerate or grow in different salts and /or their combinations. We measured the growth of cyanobacteria at different salt combinations and concentrations.

Exponentially growing acyanobacterial strain of *Anabaena* sp. BHUAR002 were inoculated in combined N-free sterile AA medium supplemented with NaCl, NaCl + Na₂CO₃ (1:1) and NaCl + Na₂SO₄ (1:1) (Yang et al. 2007) to get final salt concentrations of 100 mM, 300 mM, 500 mM, 700 mM and 1000 mM. Growth was measured by recording the absorbance of the cultures daily at 650 nm in a spectrophotometer (Milton Roy, Spectronic 20).

Measurement of osmoticum – In an attempt to find out the osmoticum synthesized by cyanobacteria to counteract the effect of salts, cells of *Anabaena* sp. BHUAR002 were incubated in Allen Arnon medium with different salt concentrations of NaCl, NaCl + Na₂CO₃ (1:1) and NaCl + Na₂SO₄ (1:1) under standard growth conditions. Sampling was done at regular intervals for 96 h and estimated the osmoprotectants such as sucrose, trehalose and glycine betaine spectrophotometrically. Sucrose was measured as described by (Handel 1968), trehalose as (Lillie and Pringle 1980) and glycine betaine as (Wall et al. 1960) at different salt combinations and concentrations.

Ion estimation: Exponentially growing cells of *Anabaena* sp. BHUAR002 was incubated at different concentrations of salts of different combinations under standard growth conditions. After 24 h, the cells were collected by centrifugation and analyzed the intracellular ion content employing atomic absorption spectrometer (Association of Official Analytical Chemists 1984; Rodkey and JR 1963).

OBSERVATION AND RESULT

Growth estimation- *Anabaena* sp. BHUAR002, tested grew well in AA medium. However, the growth was maximal when the medium contained 100 mM NaCl; growth (yield) increased by 13% over the control. 300 mM NaCl conc. also stimulated the growth as well as yield, it is 8% over the control. Cyanobacterial strain tolerated the salinity of 500 mM NaCl, but with reduced yield. Yield reduction at 500 mM NaCl was observed 15% to that of control, however, cyanobacterium could not tolerate NaCl concentrations of 700 mM and beyond. This indicates that *Anabaena* sp. BHUAR002 is salt tolerant up to 500 mM in case of NaCl as a salt.

To find out the growth of cyanobacterium at elevated CO₂ concentration, NaCl+Na₂CO₃ increased the growth of cyanobacterial strain at low salt concentrations of 100 and 300 mM NaCl+Na₂CO₃. Salt concentration of 100 mM increased the yield of *Anabaena* sp. BHUAR002 by 93%, over the control. Growth stimulation of cyanobacterium was also evident at 500 mM NaCl+Na₂CO₃, and the yield was found to be increased by 19%, over the control. cyanobacterium was able to sustain even at salt concentration of 700 mM NaCl+Na₂CO₃ with reduced growth rate and yield. Growth at 700 mM salt concentration was identical to that of control. The data thus indicated that elevated carbonate supported the growth of *Anabaena* sp. BHUAR002 strain under salinity and increased the tolerance range. However, 1000 mM NaCl+Na₂CO₃ inhibited the cyanobacterial growth completely.

Further it was found that with the salt combination of NaCl+Na₂SO₄ the yield was increased at lower salt concentration of 100 and 300 mM. Cyanobacterium was found to grow even at 1000 mM salt

concentration, although the yield was reduced. This indicated that presence of SO_4 in the saline environment not only protected the cyanobacterial cells from salt toxicity, albeit increased the range of salt tolerance to 1000 mM (Figure-1, Table-1).

Osmoticum - Sucrose and trehalose were synthesized maximum at salt concentration of 200 mM of NaCl and NaCl+Na₂CO₃ at 24 h of incubation (Figure-2).

Since methods used for estimation of sucrose and trehalose was based on anthrone test, we confirmed the compounds by ¹³C-NMR using standard sucrose, trehalose and glycine betaine. Natural abundance ¹³C-NMR spectra chemical shifts coincided with that of sucrose standard and not with trehalose and glycine betaine proving sucrose as the osmoticum synthesized by *Anabaena* sp. BHUAR002 (Figure-3, Figure-4 and Table-4).

Presence of NaCl in the nutrient solution induces the synthesis of sucrose and trehalose, both were found 165.18% and 101.68% respectively when compared to control at 200 mM NaCl. Further, when *Anabaena* sp. BHUAR002 exposed to the different concentrations of NaCl+Na₂CO₃, sucrose and trehalose synthesized maximum at 200 mM salt concentration and both were found to be 130.63% and 24.35% respectively to that of control. Presence of 200 mM of NaCl+ Na₂SO₄ does not induce the synthesis of sucrose (Table-2). It was further confirmed by ¹³C-NMR spectra which do not show any chemical shifts towards the standard of sucrose in case of NaCl+Na₂SO₄ (Table-4).

Intracellular ion concentrations- Increasing salt (NaCl, NaCl+Na₂CO₃, NaCl+Na₂SO₄) concentration in the medium, increases the intracellular Na⁺ content accordingly. Intracellular K⁺ ion at various selected concentrations of NaCl have lesser values in comparison to control but the K⁺ content have shown an increasing trend from 100 to 1000 mM concentration of NaCl. It was observed that upto 700 mM NaCl + Na₂CO₃ intracellular level of potassium ion gradually increases but at 1000 mM sudden drop was observed. Organism growth was also arrested at 1000 mM NaCl + Na₂CO₃ concentration. Intracellular K⁺ content under NaCl + Na₂SO₄ increases with the increase in concentration of salt from 100 mM to 1000 mM. Increasing level of intracellular potassium ion content upto 1000 mM indicated and supported the growth of organism upto 1000 Mm.

Salinity increases the calcium content in *Anabaena* sp. BHUAR002 upto 1000 mM NaCl concentrations. On observing the pattern of intracellular Ca²⁺ in the case of NaCl + Na₂CO₃, it was found that Ca²⁺ concentration gradually increases from 100 to 700 and decreases at 1000 mM. This indicated that increase of intracellular calcium content from 100 to 700 mM NaCl + Na₂CO₃ help organism to survive and tolerate such a high degree of salt stress and 1000 mM was found unfavorable for organism growth. As similar to intracellular potassium ion

content, intracellular calcium ion content was also found increasing upto 1000 mM NaCl + Na₂SO₄ salt stress. So it is concluded that intracellular calcium ion content also helps the cyanobacterial cells to tolerate NaCl + Na₂SO₄ upto 1000 mM. (Table-3) Intracellular chloride ion content increases with increase in NaCl concentration from control to 1000 mM NaCl. Accumulation of Intracellular chloride ion content under NaCl + Na₂CO₃ stress and NaCl + Na₂SO₄ stress was similar to NaCl stress i.e., level of Intracellular chloride ion content increases with increasing concentration of NaCl + Na₂SO₄ but its value was low as compared to NaCl and NaCl + Na₂CO₃. (Table-3)

DISCUSSION

The data obtained from this investigation strongly suggest that the very rapid NaCl entry into the cell triggers the adaptive response of the cyanobacteria to salt and that both organic and osmoregulatory mechanism are involved in this process. Osmoregulation can be accounted by the intracellular concentrations of sucrose, K⁺, and residual Na⁺ ions. For 200mM NaCl grown cells, there is a relatively rapid accumulation of sucrose followed by a more gradual accumulation of K⁺ suggesting that the initial osmoregulatory response of the cells is a 'compatible' solute, i.e. a solute which is not disruptive of macromolecular interaction (Eduardo Blumwald et al. 1983). However, when salt is NaCl+Na₂SO₄ there is a very small accumulation of sucrose; it means some other regulatory mechanisms also operate regarding the salt tolerance under sulphate supplement combined salt stress of NaCl+Na₂SO₄.

The growth of cyanobacteria in NaCl salt stress found up to 500mM, but when carbonate was given as a supplement with NaCl, the tolerance level was found to be increased upto 700mM NaCl+Na₂CO₃ concentrations. However, when salt was NaCl+Na₂SO₄, the growth of cyanobacteria became luxuriant even at 1000mM concentration. These results show that carbonate and sulphate both are growth inducer in *Anabaena* sp. BHUAR002. Primarily carbonate gives some sort of tolerance (up to 700mM), one reason behind this is CO₂ concentration, which increases the rate of photosynthesis and organism grow properly. However, when we think about the factors responsible for increased salt tolerance in cyanobacteria, two aspects can be considered; one is that the intracellular ions play a major role for the survival of organism at higher salt concentration and the second is that the formation of a osmoprotectant. In case of NaCl+Na₂CO₃, osmoprotectant play major role in cyanobacterial growth under high salt concentration of 700mM. In *Anabaena* sp. BHUAR002 in comparison to intracellular ion concentrations. However, in case of NaCl+Na₂SO₄, intracellular ion concentration and osmoprotectant

both play certain role for the survival of organism at a high salt concentration(1000mM) but some other mechanism is also involved that helps organism to survive so luxuriantly under high salt concentration which is not known. As mentioned elsewhere in result section that osmoprotectant formed in NaCl and NaCl+Na₂CO₃ is sucrose but when salt is

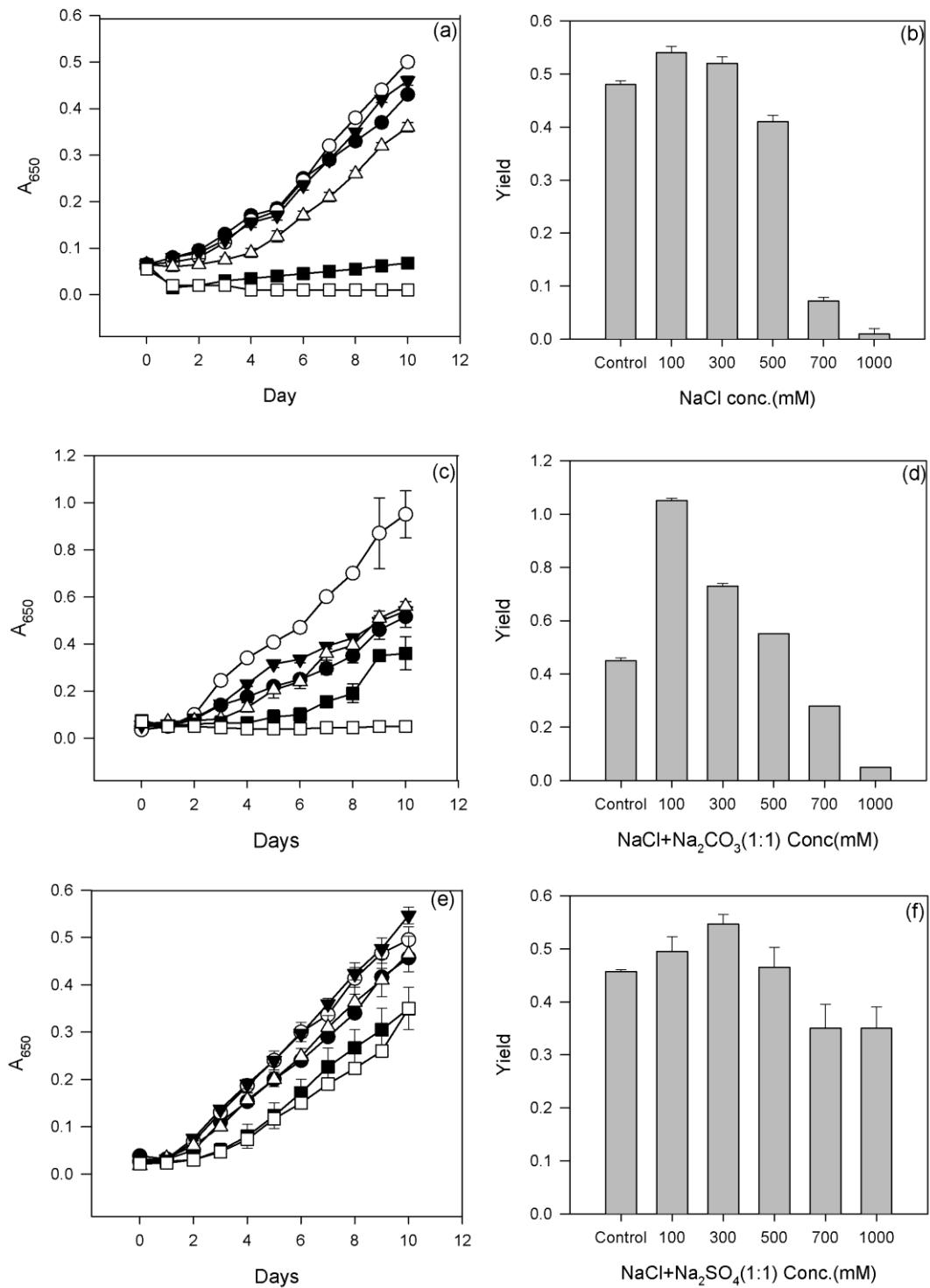
NaCl+Na₂SO₄ sucrose is not formed. Same way K⁺ accumulation is also found less in case of NaCl+Na₂SO₄ as compared to NaCl and NaCl+Na₂SO₄. Acknowledgment- Thanks are due to Prof. A. K. Rai, Department Of Botany, Banaras Hindu University, Varanasi, India, for suggestions.

Table 1. Showing percentage increase/decrease yield of *Anabaena* sp. BHUAR002 under different concentrations and combinations of salts. (AA represent Allen Arnon medium as control).

Conc (mM)	Yield (%)		
	NaCl (mM)	NaCl+Na ₂ CO ₃ (1:1)	NaCl+Na ₂ SO ₄ (1:1)
Control(AA)	100	100	100
100	112.5	193.1	108.386
300	108.3	128.7	119.7
500	85.4	118.81	101.8
700	14.6	98.02	76.64
1000	2.1	8.912	76.64

Table 2. Percentage increase/decrease in the content of sucrose and trehalose in *Anabaena* sp. BHUAR001 and *Anabaena* sp. BHUAR002 with varying concentrations of salts.

% increase/decrease of osmoprotectant				
Salt concentration	Anabaena sp. BHUAR002			
	Sucrose	Trehalose	Sucrose	Trehalose
NaCl				(NaCl+Na ₂ CO ₃)
Control	100	100	100	100
100 mM	212.74	160.22	209.5	86.6
200 mM	265.18	201.68	230.63	124.35
300 mM	246.69	167.05	221.97	103.35
400 mM	147.08	142.97	186.29	98.52
500 mM	98.54	134.95	132.21	98.32


Table 3. Showing different intracellular cations and anion in *Anabaena* sp. BHUAR002 under different concentrations and combinations of salts.

Salt (mM)	Intracellular ion content (mmol. μ g chl-1) of <i>Anabaena</i> sp. BHUAR002			
	Na ⁺	K ⁺	Ca ²⁺	Cl ⁻
NaCl				
Control	0.95	2.77	0.48	1.53
100	6.53	1.64	0.71	7.20
300	25.81	1.91	1.68	25.67
500	27.73	1.17	1.72	27.53
700	43.30	0.70	1.37	41.67
1000	55.14	0.09	0.09	54.00

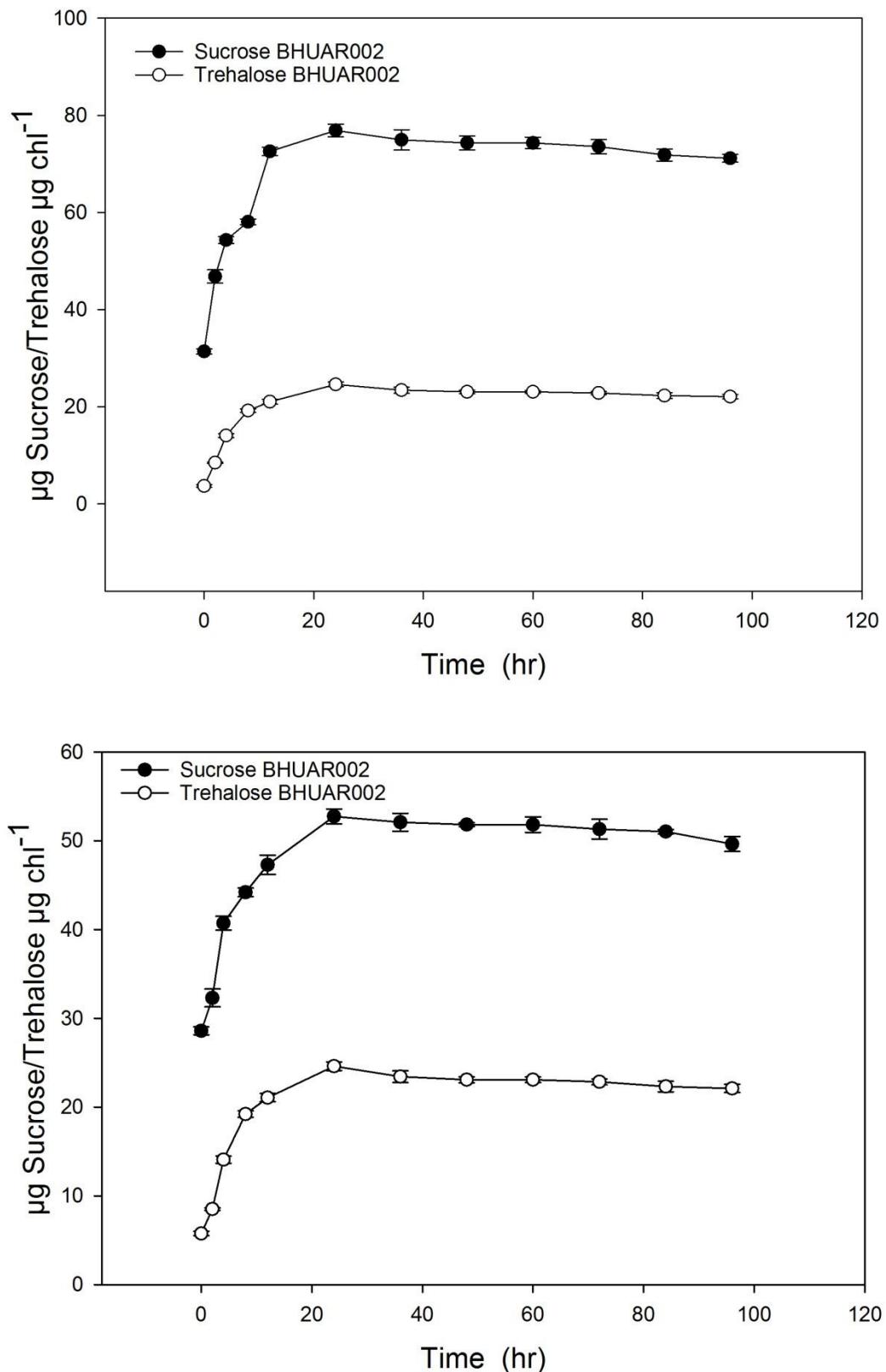
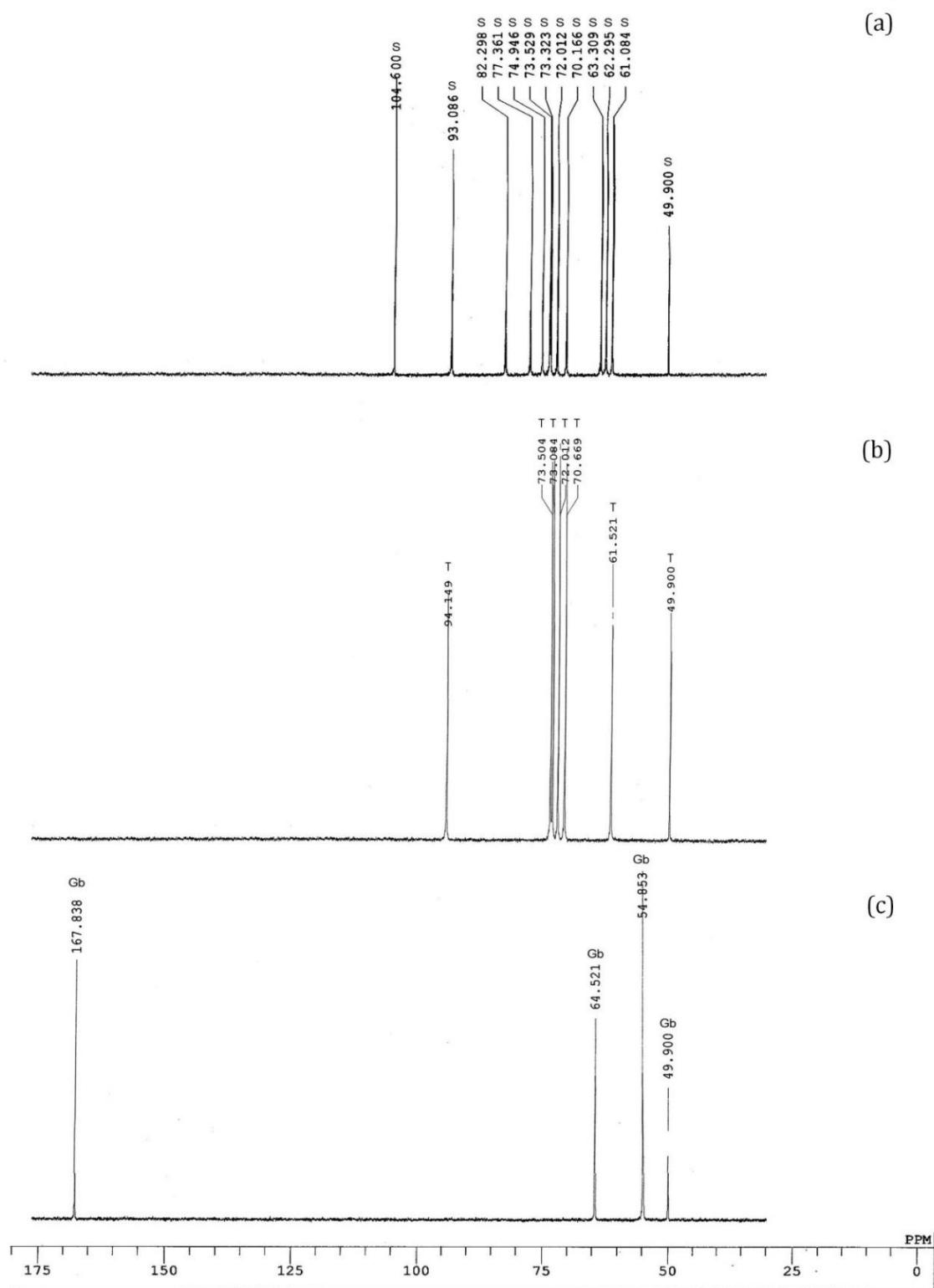

NaCl+Na₂CO₃				
100	6.39	1.75	0.84	7.20
300	25.55	2.19	1.39	26.33
500	26.90	1.95	1.47	27.33
700	40.80	2.10	1.50	40.83
1000	51.00	1.27	1.20	53.33
NaCl+Na₂SO₄				
100	5.06	0.56	0.55	1.68
300	13.30	0.90	1.37	4.42
500	37.09	1.21	2.04	9.82
700	52.97	1.92	2.44	11.01
1000	94.37	1.96	5.14	23.37

Table 4. ¹³C-NMR spectrum of sucrose, trehalose and glycine betaine (standards) and its chemical shifts (δppm) in *Anabaenasp. BHUAR002* at different salt combinations.


Std Sucrose	Std Trehalose	Std Glycine betaine	Control	NaCl	NaCl +Na ₂ CO ₃ (1:1)	NaCl +Na ₂ SO ₄ (1:1)
<i>Anabaenasp. BHUAR002</i>						
49.9	49.9	49.9	49.9	49.9	49.9	49.9
		54.853				
61.084						
	61.521					
		64.521				
70.166						
	70.669					
	73.084					
73.323						
	73.504					
73.529			73.529			
74.946				74.946		
77.361						
82.298			82.298			
93.086						
	94.149					
104.6			104.6			
		167.83				

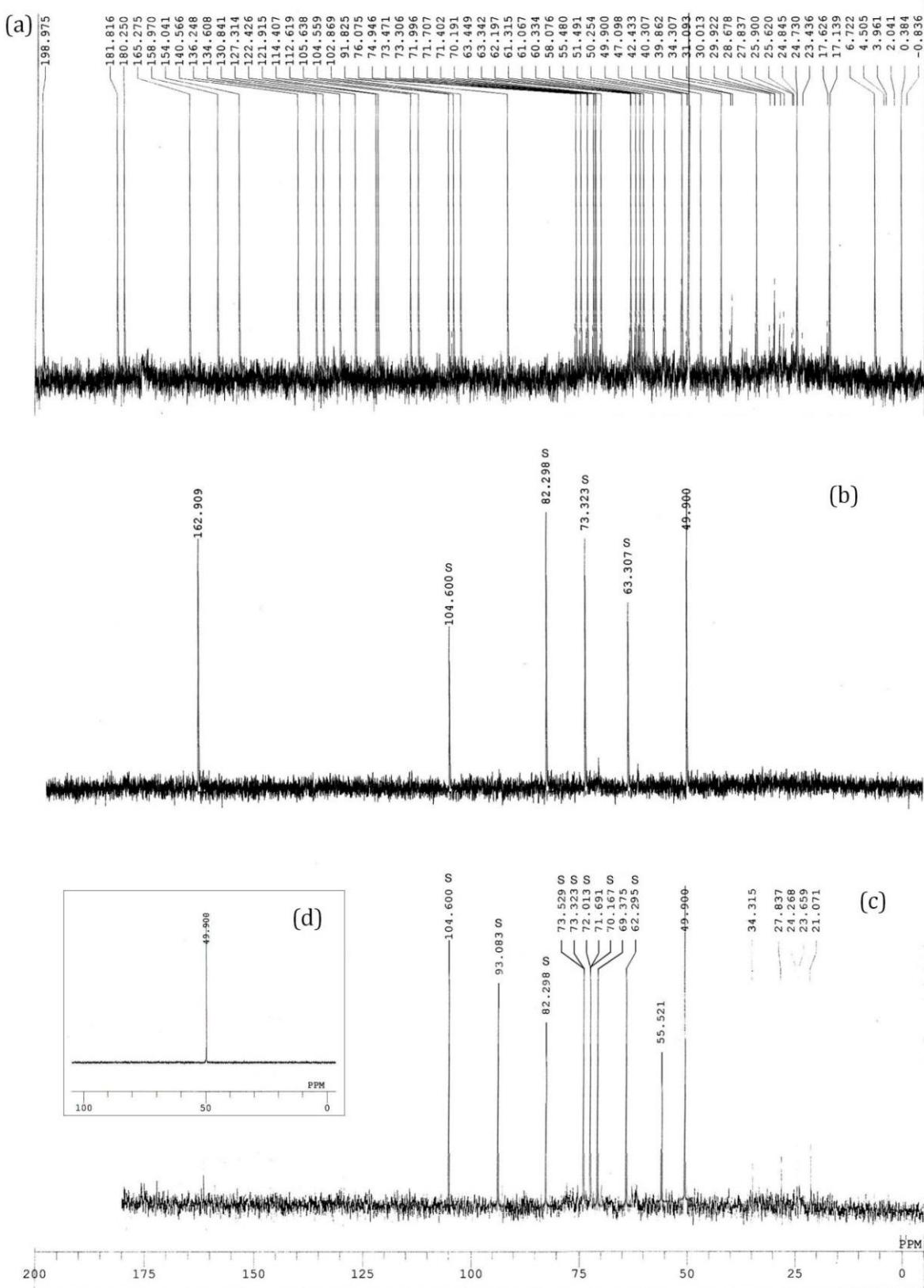

Figure 1.0. (a, b) Showing growth and yield of *Anabaena* sp. BHUAR002 at 10th day of growth under different NaCl concentrations respectively likewise (c, d) showing growth and yield (at 10th day) respectively when salt is NaCl+Na₂CO₃ (1:1), and (e, f) also showing growth and yield (at 10th day) respectively of *Anabaena* sp. BHUAR002 when salt is NaCl+Na₂SO₄ (1:1) : control (●), 100 mM (○), 300 mM (▼), 500 mM (△), 700 mM (■), 1000 mM (□)

Figure 2. Level of osmoprotectants in *Anabaenasp. BHUAR002* at different time interval with 200 mM NaCl (a) and NaCl+Na₂CO₃ (1:1) (b).

Figure 3.0. δ ppm shift (^{13}C -NMR Scale) of the standard of Sucrose (a), Trehalose (b) and Glycine betaine (c).

Figure 4.0. a, b, c, d are showing ^{13}C -NMR results (δ ppm shift) of $\text{NaCl}+\text{Na}_2\text{SO}_4$ (1:1) stressed, $\text{NaCl}+\text{Na}_2\text{CO}_3$ (1:1) stressed, NaCl stressed, and control samples respectively.

REFERENCES

Allen, M. B. and Arnon, D. I. (1955). Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by *Anabaena cylindrica* Lemm. *Plant Physiol.*, 30, 366-372.

Apte, S. K., Reddy, B. R. and Thomas, J. (1987). Relationship between Sodium Influx and Salt Tolerance of Nitrogen Fixing Cyanobacteria. *Applied and Environmental Microbiology*, 53(8), 1934-1939.

Association of Official Analytical Chemists (1984). Official methods of analysis. (14 ed.). 14th ed. Washington, D C.

Blumwald, E., Mehlhorn, R. J. and Packer, L. (1983). Ionic Osmoregulation during salt adaptation of the cyanobacterium *Synechococcus* 6311. *Plant Physiology*, 73, 377-380.

Blumwald, E. and Telor, E. (1982). Osmoregulation and cell composition in salt-adaptation of *Nostoc muscorum*. *Arch Microbiol*, 132, 168-167.

Brock, T. D. (1973). Evolutionary and ecological aspect of cyanophyte. In N. G. Carr, & B. A. Whitton (Eds.), *The biology of blue-green algae* (pp. 487-500): Oxford:Blackwell.

Desikachary, T. V. (1959). Cyanophyta. . *ICAR Monograph on Algae, ICAR, New Delhi, India*.

Gupta, B. and Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. *International Journal of Genomics*, 2014, 18.

Handel, E.V. (1968). Direct Microdetermination of Sucrose. *Analytical Biochemistry*, 22, 280-283.

Lillie, S.H. and Pringle, J.R. (1980). Reverse Carbohydrate Metabolism in *Saccharomyces cerevisiae*: Responses to Nutrient Limitations *Journal of Bacteriology*(Sept.), 1384-1394.

Pade, N. and Hagemann, M. (2014). Salt Acclimation of Cyanobacteria and Their Application in Biotechnology. *Life*, 5, 25-49.

Rai, A. (2015). Salt tolerance by cyanobacteria and reclamation of usar soil *Indian Journal of Plant Sciences*, 4(2), 59-62.

Rai, A. and Rai, A.K. (2011). Morphological and molecular characterization of two usar soil cyanobacterial isolates. *Journal of Scientific and Applied Research*, 2(2), 136 - 141.

Reddy, B. R., Apte, S.K. and Thomas, J. (1989). Enhancement of Cyanobacterial Salt Tolerance by Combined Nitrogen. *Plant Physiology*, 89, 204-210.

Rodkey, F.L. and J.R., J.S. (1963). Microdetermination of chloride in blood plasma and cells, by spectrophotometric analysis using solid silver iodate. *Clin. Chem.*, 9, 668-681.

Singh, R.N. (1950). Reclamation of "usar" lands in India through bluegreen algae. *Nature*, 165, 325-326.

Singh, R.N. (1961). Reclamation of usar lands. In *Role of Blue Green Algae in Nitrogen Economy of Indian Agriculture* (pp. 83-98.). New Delhi: Indian Council of Agricultural Research.

Thomas, J. and Apte, S.K. (1984). sodium requirement and metabolism in nitrogen-fixing cyanobacteria. *J. Biosci*, 6, 771-794.

Wall, J.S., Christianson, D.D., Dimler, R.J. and Senti, F.R. (1960). Spectrophotometric Determination of Betaines and Quaternary Nitrogen Compounds as Their Periodides. *Analytical Chemistry*, 32, 870-874.

Yang, C., Chong, J., Li, C., Kim, C., Shi, D. and Wang, D. (2007). Osmotic adjustment and ion balance traits of an alkali resistant halophyte *Kochia sieversiana* during adaptation to salt and alkali condition. *Plant Soil*, 294, 263-276.