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Abstract: When the size of the experimental material is not sufficient to accommodate all the treatments, we require
incomplete block designs to test various treatments under study in agricultural and biological sciences. The author of the
present paper has discussed one of the incomplete block design, namely, Balanced Incomplete Block Design ( BIBD ). He
has tried to present the review of the available literature on BIBD in brief, its analysis in case of complete data, and in case
of one missing observation as well. The subject matter discussed here is not entirely new, but its presentation is new.
However, the method for the analysis of BIBD in presence of one missing observation has been developed by him in 1992
in his unpublished Ph. D thesis. The Complex mathematical expressions are avoided in the present paper, and only simple
expressions are provided to analyze the data. The methods are also supported by suitable examples. This will be of great
help to the investigators engaged in agriculture and biological sciences.
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INTRODUCTION

Experimentation and making inferences are twin
essential features of general scientific methodo-
logy. Statistics as a scientific discipline is mainly
designed to achieve these objectives. The methodo-
logy for making inferences has three main aspects.

1. It derives methods for drawing inferences from
observations when these are not exact but subject
to variation.

2. It specifies methods for collection of data
appropriately so that the assumptions for the
application of appropriate statistical methods to
them are satisfied.

3. The techniques for proper interpretation of results
are devised.

A good coverage of these is available in Fisher
(1953), Giri (1976), and Scheffe (1959). Mainly three
types of experiments require statistical designing.
These are (i) factorial experiments, (ii) varietal trials,
and (iii) bio-assays. Varietal trials are primarily
agricultural experiments to select a few varieties of a
crop through experimentation over a number of
varieties which are better than the rest in respect of
some economic character. These experiments are
generally conducted in complete block designs like
RBD or LSD. These designs are used only when the
number of treatments is 12 or less. We also know
that the precision of the estimate of a treatment effect
depends on the number of replications of the
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treatment. That is, larger is the number of
replications, the more is the precision. A similar
thing holds for the precision of the estimate of the
difference between two treatment effects. This
consideration has been exploited to construct designs
for varietal or similar trials with large numbers of
treatments so as to reduce the block size. Here comes
the concept of incomplete block designs. A block is
said to be incomplete in a design if the number of
plots in the block is less than the number of
treatments. In order to ensure equal or nearly equal
precision of the comparisons of different pairs of
treatments, the treatments are so allotted to the
different blocks that each pair of the treatments has
the same or nearly the same number of replications
and each treatment has an equal number of
replications. When the number of replications of all
pairs of treatments in a design is same, then an
important series of designs known as balanced
incomplete block design (B.1.B.D) is obtained.

An incomplete block design with v treatments
distributed over b blocks, each of size k ( k < v ),
such that each treatment occurs in r blocks, no
treatment occurs more than once in a block, and
each pair of the treatments occurs together in A
blocks, is called a balanced incomplete block design
(B.IB.D). The symbols v, b, v, k, and 1 are called
parameters of the design. These parameters satisfy
the following relations

()vr=bk, ()r(v-1)=r(k-1), (ii)b>v.
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If b = v and r = k then the BIBD is called symmetric
BIBD. It is seen that the blocks of the designs

v=s?, b=s(s+1), r=s+1, k=s, A=1

where s is a prime or power of a prime, can be
divided into (s + 1) groups of s blocks each, such
that in each group each of the treatments is replicated
once. Such types of designs are called resolvable.
Again, if the number of treatments common between
any two blocks is belonging to two different groups
of a resolvable design is constant, then such designs
are called affine resolvable designs.

For resolvable designs no solution exist if
b<v-r+1.

Fisher’s inequality has established that the solutions
of designs with b < v are not possible. No set of
parameters of a BIBD with b divisible by r is
possible where b<v—r+1.

BIBD was first devised by Yates (1936). Later on
Fisher, Yates and Bose (1939) jointly solved its
construction problems. It was found that BIBD were
not always suitable for varietal trials because these
designs requires large number of replications and
further, suitable designs are not available for all
number of treatments. To overcome such difficulties,
Yates (1936) evolved another series of incomplete
block designs which he called lattice designs. Bose
and Nair (1939) evolved some another type of
incomplete block designs which they called partially
incomplete block designs. Later on, some other
incomplete block designs namely re-inforced
incomplete block designs, circular designs were
obtained by Das (1958) and Giri (1958). The
discussion on these series of designs is beyond the
scope of present study.

It is important to note that BIBD is used when the
experimental material is not of sufficient size to
accommodate all the treatments in the blocks.

MATERIAL AND METHODS

The present discussion does not require the detailed
mathematical version of the analysis of BIBD. Here,
the author presents the list of expressions used in the
analysis of numerical data in a simple and lucid
manner so that any researcher can understand and use
them easily in case of complete and incomplete data.
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Section 1: Analysis of BIBD in case of Complete
data:

With the definition of BIBD, as given above, the
appropriate model is
Y, =u+t +b; +¢ .. (2.1.1)
i=1,2,...,v; j=1,2,...,1;

with usual notations. For complete set of data, we
have following expressions.

GZ
"

CF

v b
Total Sum of Square = ZZY"? -CF

i=1 j=1

with (vr—1) df only.

. b, B
Block Sum of Square (unadjusted ) = 2?1 —-CF,

j=1

with (b —1) df only.
k \
Treatment Sum of Square = — 2
g gy ;Q.
with (v—1) df only.
1 b
Where Q, =T, —EZnij B,
j=1

=Adjusted treatment totals.

Error Sum of Square = Total Sum of Square — Block
Sum of Square — Treatment Sum of Square with (v r
—b-v+1)dfonly.

Section 2: Analysis of BIBD in presence of One
Missing Observation:

Without any loss of generality, we may assume that
the missing observation belongs to 1% treatment in
1* block. Also, that the first k-treatments are allotted
to the 1% block. The appropriate model for the
analysis of such data will be

Y, = u+t +b; +e, ... (22.1)

i=1,2,....,v; j=1,2,...,1;

with usual notations. For incomplete set of data, we
have to estimate the missing observation by using the
following expressions :
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_ B +k(kQ, Q)
Y (k=D)(Av—k)

where Q) =Q,y, + Q)+ +Qyy, = Sum of all

the adjusted treatment totals of the treatments falling
in the 1% block.

Error Sum of Square =E.S. S =
72 2 1 7\2 b 2 k - 2
Y24+ Y2 == (B+Y) P+ D Bl |-—> Q)
a k =2 AV

.. (223)

. (222)

With (n—b —v) df.

UnderHp:ti=t, = ...... =t,, i.e. the treatments are

homogeneous, the model (2.2.1) reduces to
Y, = u+b, +e o (22.4)

The new estimate of the missing value under (2.2.2)
will be

Bl
(k-1)

The new error sum of square under (2.2.2) will be
_ * 2 * b \

Eo.SS.=[v,svz |- g av+ 3B |- K >
a k = AV T

... (2.2.6)

Y, =

... (223)

With (n—b - 1) df.

Treatment Sum of Square=
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k & :
Eo.S.S.—E.S.S= —3'Q? ~Bias, ...(227
0 /IV;Q. (2.2.7)

with (v —1) df only.

k=D o (k-D(y B Y
Bias . Y,-Y) (Yl (k—l)j

k
... (22.8)
vf—A)—2k02+ Ko® 229
sk AV Av(k=1)(Av—k) - (229)
P 2ka®  k(k-1o°
vt -t ) = + .. (2.2.10
W=§+'1,k+z?.?,v AV AV(Av—kK) (2210
- 2ko? ko?
v(t, -t,) = ° 9 .. (22.11)
AV Av(k=1)(Av-Kk)
2
v(f, —f,)=v( —f,) = 25‘7 . (2.2.12)
Relative Efficiency= V=Div=k) (2.2.13)
{(v=1)(Av—k)+k}
Relative Loss in Efficiency=
k
. (2.2.14)

{(v=D)(Av—K) +k}

Illustration 1: Following table gives the results of an experiment conducted in a BIBD for comparing 7

treatments in 7 blocks of 3 units each.

Table 1:
Treatment Blocs
1 2 3 4 5 6 7
1 50 42 91 - - - -
2 - - 118 94 94 - —
3 76 - - 64 - 80 -
4 - - 72 - - 53 31
5 44 - - - 65 - 54
6 - 102 - - 119 92 -
7 - 38 - 38 - - 37

The above shown design is a symmetric BIBD with parameters (v=7=b, r=7=k,A=1).

Ho : Treatments are homogeneous.
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The results are analyzed in the following table :
SI. No. T; Blocks Bj Z nj Bj Qi Qi2 Ti2 sz
1 183 1,2,3 170 633 —28.00 781.00 33489 28900
2 306 3,45 182 755 54.33 2951.75 93636 33124
3 220 1,4,6 281 591 21.00 529.00 48400 78961
4 156 3,6,7 196 628 —-53.33 2844.09 24336 38416
5 163 1,57 278 570 —27.00 729.00 26569 77284
6 313 2,5,6 225 685 84.67 7169.00 97969 50625
7 113 2,47 122 500 —53.67 2880.47 12769 14844
Total 1454 1454 4362 0 17887.31 337168 322194
G? (1454) L&
Fe—= (1454)° _ 100672.19, Total Sum of Square = Y »_Y;* —CF = 15057.81,
i=1 j=1
b B2
Block Sum of Square (unadjusted ) = ZT’ —CF =6725.81,
j=1
k )
Treatment Sum of Square = — Z = 7665.99
q gy Z_’,Q
E.S.S.=15057.81 - 6725.81 — 7665.99 = 666.01
ANOVA Table
Source of Variation d.f. 55 M.S.S. Variance Ratio Ftab. 0.05
Treatments (adjusted) 6 7665.99 1277.67 15.347" 3.58
Blocks (unadjusted) 6 6725.81 1120.97 13.46 -
Error 8 666.01 83.25 - -
Total 20 | 15057.80 - - -

It is clear that F., = 15.347 > 3.58 , we conclude that null hypothesis Hy is rejected at 5 % level of significance
i.e. the treatments differ significantly.

_S,X%q =69.24+§Qi

. k
Adjusted treatment means=y +—Q.
: Y. Q bk Av

v
Which gives treatment means as
T,=57.24, T,=92.53, T,=79.10, T, =46.38, T, =57.67, T, =105.52, T, =46.24
It is also clear that 6" treatment is the best treatment followed by 2™ , 3 5™ 1% 4™ and 7" respectively.
Other discussion is beyond the scope of the present study.

Ilustration 2 : As an illustration for one missing observation in BIBD, | analyze the following B. I. B. Design
with parameters v =6, b = 10, r = 5, k = 3, A = 2 with one missing observation. The missing observation

belongs to 5™ treatment in 9" block shown within the rectangle.

Blocks Contents Blocks Contents
I 25,1 VI 5,6,3
I 2,3,6 Vil 5,6,4
Il 2,3,4 VI 6,1,2
v 34,1 IX 1,35
\Y/ 4,52 X 1,4,6
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The estimate of the missing observation will be obtained by

v AVB, +k {kQ, —Q} _12B,+3{Q, -Q3}
(k=D (Av—k) 18
where B, = Total of all the known observations of the 9" block,

Qs = Adjusted treatment total of the 5™ treatment,
Qs = Quv) + Qspvy + Qs
The error sum of square will be
10

72 2 1 % 2 1 - 2
E.S.S.:(Y +2Y j—é{(ng) + B,}—Z;Qi

j=1,j#9

with 14 d.f. only.

Under Hy : Treatments are homogeneous. The new estimate of the missing observation and error sum of square
will be

y-_B B
k-1 2

* *\ 2 10
Eo. S.S.= [YZ“LZYZJ—%{(BN“Y) Py Bf} with 19 d.f. only

j=1,j#9

1 6
TreatmentS.S.= E,. S.S.~E.S.S.= ZZQf—Bias with 5 d.f. only.
i=1

. 2
Bias:ﬁ(v_vj 2y B
3 3 2

2 2 2 2
V(fS_fu):O-_+O-_ V(fS_fw):O-_-l_O-_
u=13 2 8 w=2,4,6 2 18

R R . . 02 . . 02 0_2
t —€)=v(, - )=— v(f, -f)=—+=—
V( L|J.J¢u'U) V( V\X/¢W'W) 2 (u ) 2 72

Relative Efficiency = % Relative Loss in Efficiency =%
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