

A FIELD TRIAL TO STUDY THE EFFECT OF *AZOSPIRILLUM BRASILENSE* AND *PSEUDOMONAS STRIATA* AS INOCULANTS AND INSECTICIDE CARBOFURAN ON GROWTH PARAMETERS OF SORGHUM CROP

Vandna Saxena* and **Jaya Mohan****

*Division of Microbiology

**Division of Agriculture Chemicals,

Indian Agricultural Research Institute New Delhi-110012

Abstract: The field trial with inoculants *Azospirillum brasiliense* and *Pseudomonas striata* and insecticide carbofuran showed significant increase in grain yield, there was significant decrease in dead heart formation with carbofuran. With application of ammonium sulphate at the rate of 100kg N/ha a yield of 34.75g/ha was obtained and with *Azospirillum* a yield of 32.0g/ha was obtained. The results clearly indicated that inoculation with *A. brasiliense* could save about 60kgN/ha since a basal dose of 40kgN/ha as ammonium sulphate was provided.

Keywords: *Azospirillum brasiliense*, *Pseudomonas*, Nitrogen uptake

INTRODUCTION

If biological nitrogen fixation could replace the chemical Nitrogen for the crop productivity even in part, food production targets could be obtained without the application of high level of chemical fertilizer the application of *Azospirillum brasiliense* a *Pseudomonas striata* have gained importance as a inoculants in the rhizosphere of cereals plants as biological nitrogen fixers. The main reason of their acceptance has been increasing cost of chemical fertilizers, secondly the energy needed for their metabolism is much less as compared to other non symbiotic bacterial inoculants. On the other hand they can survive and resist high soil temperature of tropical and subtropical areas the use of biological nitrogen fixers has been increasing around the world at a steady rate.

MATERIALS AND METHODS

The field experiment was conducted at Indian Agricultural Research Institute Agriculture farm New Delhi with Sorghum crop var. Swarna as test crop. Ten treatments were used in 40 plots (14'x30') as listed in plan layout (Table 1) Effect of inoculation of seeds with *Azospirillum brasiliense* strain 251 and *Pseudomonas striata* with two nitrogen levels at the rate of 100 kgN/ha and 40kgN/ha as ammonium sulphate. Insecticide carbofuran was applied to seed furrows. The observations were recorded of the *Azospirillum* population in the rhizosphere at vegetative and harvest stage, nitrogen percentage at vegetative flowering and harvest stage, dead hearts percentage,

carbofuran residue grain yield q/ha and Nitrogen uptake by grains. Kg/ha. A uniform basal dose of 40kg N/ha with 60KgP₂O₅/ha was applied at the time of final field preparation and mixed with the soil but in the last two treatments (T₉ and T₁₀) two split doses of 30 kg N/ha were applied after 25 days and 45 days of sowing i.e. (40+30+30=100 kg N/ha). The seeds were soaked in culture solutions of inoculants used as per treatment for two hours and then dried under shade. The seeds were dibbled with hand in rows and covered immediately after applying carbofuran in furrows. Total five irrigations were given and the soil moisture ranged between 17.4 to 20.5% with an average of 19.6% the counts of dead hearts formed due to shoot fly damage were taken on 20th day after germination *Azospirillum brasiliense* and *Pseudomonas striata* population in the rhizosphere were estimated by NPN using serial dilution method (Cappuccino and Sherman 1992) at vegetative and harvest stages. Analysis of carbofuran residue in plants was done using the GLC method (Cook *et. al.*, 1969) Nitrogen was estimated by Technicon autonalyser.

RESULTS

The population of *Azospirillum brasiliense* and *Pseudomonas striata* is presented in Table 2. The number of *Azospirillum* ranged between 1.1×10^7 and 20×10^7 /g dry soil in control and *Azospirillum* inoculated soil at 25 days of vegetative growth of sorghum plants. Carbofuran treatment increased their population by about 13 and 3.6 times over control at vegetative and harvest stage

*Present Address Department of Botany, D.A.V. College, Dehradoon (Uttarakhand)

**Senior Research Fellow.

respectively. The $(13.6 \times 10^7/\text{g soil})$ population was observed in carbofuran treated soil where *Azospirillum brasiliense* alone showed a population of $20 \times 10^7/\text{g}$ and $9.2 \times 10^5/\text{g soil}$ at vegetative and harvest stages respectively.

Nitrogen:

The nitrogen percentage was estimated at vegetative, flowering and harvest stages and are presented in Table 3.

The nitrogen percentage increased in all the treatments in comparison to control, but the maximum nitrogen percentage was observed with *Azospirillum brasiliense* treatment which was 2.0%, 1.50%, and 0.84% at vegetative, flowering and harvest stages. The results of the effects of inoculants and carbofuran on dead heart percentage, carbofuran residue percentage, grain yield q/ha and nitrogen uptake kg/ha have been presented in Table 4.

Table 1. Plan of Layout

R IV	T ₃	T ₁	T ₅	T ₈	T ₁₀	T ₆	T ₄	T ₂	T ₇	T ₉
R III	T ₆	T ₅	T ₁	T ₁₀	T ₉	T ₇	T ₄	T ₃	T ₂	T ₈
R II	T ₅	T ₉	T ₆	T ₄	T ₈	T ₂	T ₇	T ₁₀	T ₁	T ₃
R I	T ₁	T ₂	T ₃	T ₅	T ₇	T ₈	T ₄	T ₉	T ₄	T ₁₀
Experiment design	:	RBD	T 1	-	N40					
Number of supplication	:	4	T2	-	N40 + Carbofuran					
Total Number of Plots	:	40	T3	-	N40 + <i>A. brasiliense</i>					
Gross Size	:	14f x 30f	T4	-	N40 + <i>A. brasiliense</i> + Carbofuran					
Distance between replication	:	75cm	T5	-	N40 + <i>P. striata</i>					
Distance between Row to Ro	:	75cm	T6	-	N40 + <i>P. striata</i> + Carbofuran					
Distance between plant to plant	:	15 cm	T7	-	N40 + <i>P. striata</i> + <i>A. brasiliense</i>					
			T8	-	N40 + <i>P. striata</i> + <i>A. brasiliense</i> + Carbofuran					
			T9	-	N100					
			T10	-	N110 + Carbofuran					

Table 2. Counts of *Azospirillum brasiliense* in the rhizosphere of sorghum crop

Treatments	Vegetative Stage $\text{g}10^7/\text{g soil}$	Harvest Stage $\text{g}10^5/\text{g soil}$
Control (Untreated seeds)	1.1	1.5
Carbofuran	13.6	5.4
<i>Azospirillum brasiliense</i>	20.0	9.2
<i>Pseudomonas striata</i> + <i>Azospirillum brasiliense</i>	15.6	8.0
<i>P. Striata</i> + <i>A. brasiliense</i> + Carbofuran	2.42	1.7
<i>Azospirillum brasiliense</i> + Carbofuran	2.43	0.2
S\pmem	0.1	0.2
C.D.at 5%	0.36	0.02

Table 3. Nitrogen percentage at vegetative, flowering stage and harvest stage of sorghum crop

Treatments	Vegetative Stage (25 days after germination)	Flowering Stage 60 dyas after germination	Harvest Stage
Control (Untreated seeds)	1.0	1.04	0.60
<i>Azospirillum brasiliense</i>	2.00	1.50	0.84
<i>A. brasiliense + Carbofuran</i>	1.20	1.07	0.70
<i>Pseudomonas striata</i>	1.65	1.12	0.67
<i>P. Striata + Carbofuran</i>	1.65	1.00	0.70
<i>A. brasiliense + P. Striata</i>	1.80	1.04	0.65
<i>A. brasiliense + P. Striata + Carbofuran</i>	1.25	0.97	0.50
S \pm em	0.63	0.93	0.6
C.D.at 5%	0.08	0.03	0.08

Table 4. Effect of Microbial inoculants and insecticide carbofuran on dead hearts, insecticide residue grain yield and nitrogen uptake by sorghum crop

Treatments	Dead hearts (%)	Carbofuran residue (%)	Grain Yield (q/ha)	Nitrogen uptake in grains (kg/ha)
Control (40kg N/ha)	20.56 (26.36)	-	16.66	26.15
40kg N/ha Carbofuran	2.56 (7.58)	1.84	28.98	42.6
40kg N/ha <i>Azospirillum brasiliense</i>	17.56 (24.56)	-	27.03	45.95
40 + <i>A. brasiliense + Carbofuran</i>	2.60 (6.59)	0.60	32.00	50.24
40 + <i>Pseudomonas striata</i>	17.15 (24.01)	-	26.11	37.37
40 + <i>P. Striata + Carbofuran</i>	2.73 (2.43)	2.86	28.06	42.03
40 + <i>A. brasiliense + P. Striata</i>	12.39 (19.76)	-	24.37	38.26
40 + <i>A. brasiliense + P. Striata + Carbofuran</i>	1.73 (7.38)	1.74	31.29	49.12
100kg N/ha	24.79 (29.61)	-	23.99	33.58
100kg N/ha + Carbofuran	3.48 (10.49)	1.00	34.75	57.33
S \pm em	2.59	-	1.90	2.88
C.D.at 5%	12.83	-	5.52	11.29

Actual values of death hearts given in the parenthesis.

Values obtained by transformation are outside the parenthesis.

Dead hearts formation:

The effect of carbofuran application on dead heart formation in carbofuran treated plots varied from 1.73% to 3.48% in comparison to non treated plots (20.56%) carbofuran treatment reduced the loss due to dead heart formation significantly. Treatment with full dose of fertilizer 100kg N/ha showed 24.79% and 40kg N/ha 20.56% of dead heart formation. Carbofuran residue percentage varied from 0.60% to 2.86% since the level of carbofuran in plant tissues depends upon the amount of carbofuran present in soil, this study indirectly showed that inoculation of sorghum seeds with *Azospirillum* and *Pseudomonas* cultures did not enhance the biological degradation of carbofuran in soil. There was significant increase in grain yield in all the treatments the maximum grain yield was obtained with 100 kg N/ha with carbofuran (34.75g/ha) *Azospirillum brasiliense* with carbofuran recorded a yield of 32.0g/ha. This clearly indicated that inoculation with *Azospirillum brasiliense* could save about 60kgN/ha since a basal dose of only 40kgN/ha was provided. The maximum nitrogen uptake in grains was observed with 100 kg N/ha + Carbofuran treatment followed by 40kg N/ha + *A. brasiliense* + carbofuran which showed a uptake of 50.24kg N/ha which was statistically at par with N100+Carbofuran (57.33 kg/ha). The application of carbofuran controlled the dead heart formation in sorghum crop. The control of dead hearts from carbofuran was earlier reported by Jotwani and Sukhani (1968) The present study has showed that inoculation with *Azospirillum brasiliense* or *P. striata* cultures in compatible with carbofuran treatments. The effect on yield was more pronounced with *A. brasiliense* which showed a significant increase in yield. However there was no further gain due to combined inoculation in grain yield. Kapulnik *et. al.* (2008) have reported the favourable effect of *A. brasiliense* on the different growth parameters of wheat Cv. Nirias the maximum nitrogen uptake in grains followed by *A. brasiliense* + Carbofuran treatment. Bouton and Zuberer (1979) has studied the nitrogen uptake by *Panicum maximum* in humid sub tropical conditions and have reported an increase in the uptake with fertilizer application. Nayak and Rao (1980) have also observed increased nitrogen fixation in rice fields. Rajeshkharan *et al.* (2007) observed similar results with green gram with inoculants. Recently many reports have appeared suggesting beneficial effect of using *Azospirillum* alone or in association with other free living bacteria. Yeole (1997); Yahalom *et al.* (1990); Sarig and Kapulnik (2006); Richardson (2004); Sivaramariah *et al.* (2007).

REFERENCES

- Bouton, J.N. and Zuberer, D.A.** (1979). Response of *Panicum maximum* Jaeq to inoculation with *Azospirillum brasiliense*. *Plant and Soil*, **52**: 580-590.
- Cappuccino, J.G. and Sherman N.** (1992). *Microbiology Laboratory Manual*. Addison-Wesley Pub. Co. Inc.
- Cook, R.P; Stanovick, R. and Cascil, C.C.** (1969). Determination of Carbofuran and its carbonate metabolic residue in corn. *J. Agri Food. chem.* **17**: 272-282.
- Jotwani, M.G. and Sukhani, T.R.** (1968). Seed treatment of Sorghum with Carbofuran for the control of shoot fly in Sorghum. *Pesticides*, **5**: 13-14.
- Kapulnik, Y.; Sarig, S. and Okon, Y.;** (2008). Response of wheat (*Triticum aestivum*) cv. Nirias to *Azospirillum* inoculation 6th Internation symposium on nitrogen fixation with non legumes 5-10 sept. Abst. Bnaff canada.
- Nayak, D.N. and Rao, V.R.** (1980). Pesticides and hetero-trophic Nitrogen fixation in paddy. *Soil. Biol. Biochem*, **12**: 12-16.
- Richardson, A.E.** (2004). Soil microorganism and Phosphorus and Nitrogen availability in soil biota, CSIRO Melboren. Aust. pp. 50-62.
- Rajeshkharan, V.; Thangepandian, V.; Muthukumar, T. and Sumathi, C.S.** (2007). Influence of inoculants on growth and yield of green gram. *Jour. Sus. Agri.*, **31**(3) : 85-109.
- Sarig, S. and Kapulnik, Y.** (2006). Effect of *Azospirillum* on nitrogen fixation and growth of several winter legumes Plant & Soil, **98** : 335-342.
- Sivaramaiah, N.; Malik, D.K. and Sidhu, S.S.** (2007). Improvement of chick pea (*Cicer arietinum*) by inoculation of *Azospirillum*, *J. Micro.*, **47** (1) 51-56.
- Yahalom, E.; Okon, Y. and Dovard, A.** (1990). Effect of *Azospirillum* on nitrogen fixation of several forage legumes. *Can. J. Micro.*, **36**: 514-516.
- Yeole, R.D.** (1997). Increased plant growth and yield through bacterization. *Zentrab. Fur Micro.*, **128** : 110-117.