

INFLUENCE OF RHIZOPHORA MUCRONATA AND PISUM SATIVUM ON SOIL CHARACTERISTICS

Sanjay Kataria* and Sanjay Kumar**

* Department of Botany, B.S.A. College, Mathura

** Department of Botany, J.V. College, Baraut (Corresponding address)

Abstract: Plants inhabit a range of soil and climate type for the growth. However, cultural practices make exotic species also inhabit a different soil and climate. With the idea of studying the requirement of a mangrove plant from the soil, a variety of soil including its native soil brought from different provinces (U.P., A.P., Uttarakhand) and provenances of U.P.-Polluted, Irrigated, Roadside were studied for their physical and their nutrient properties initially and after the growth of the *Rhizophora mucronata*. Similarly in artificially made combination of soil to math with the area close to the coal fields, a study was carried out after growing a pulse crop. Barren soil of Uttarakhand with minimum organic matter, CEC, WHC, Moisture% and Total N₂ exhibited best growth of *Rhizophora mucronata* in Meerut climate (35°C, 60% RH). It also exhibited maximum Na⁺ uptake by the plant whereas, the plant did not take up Na⁺ from mangrove soil. Rest of the soil extracted out Na⁺ from the seedling in the form of leachates. The normal irrigated soil initially at pH 8.0, after growth of a pulse crop *Pisum sativum*, lowered down in pH with additional CEC in contrast to the previous observation and also lost organic matter by 50%. The study throws light on regeneration of abandoned and degenerating lands.

Key words: *Rhizophora mucronata*, *Pisum sativum*, Soil-climate regime and Salinity.

INTRODUCTION

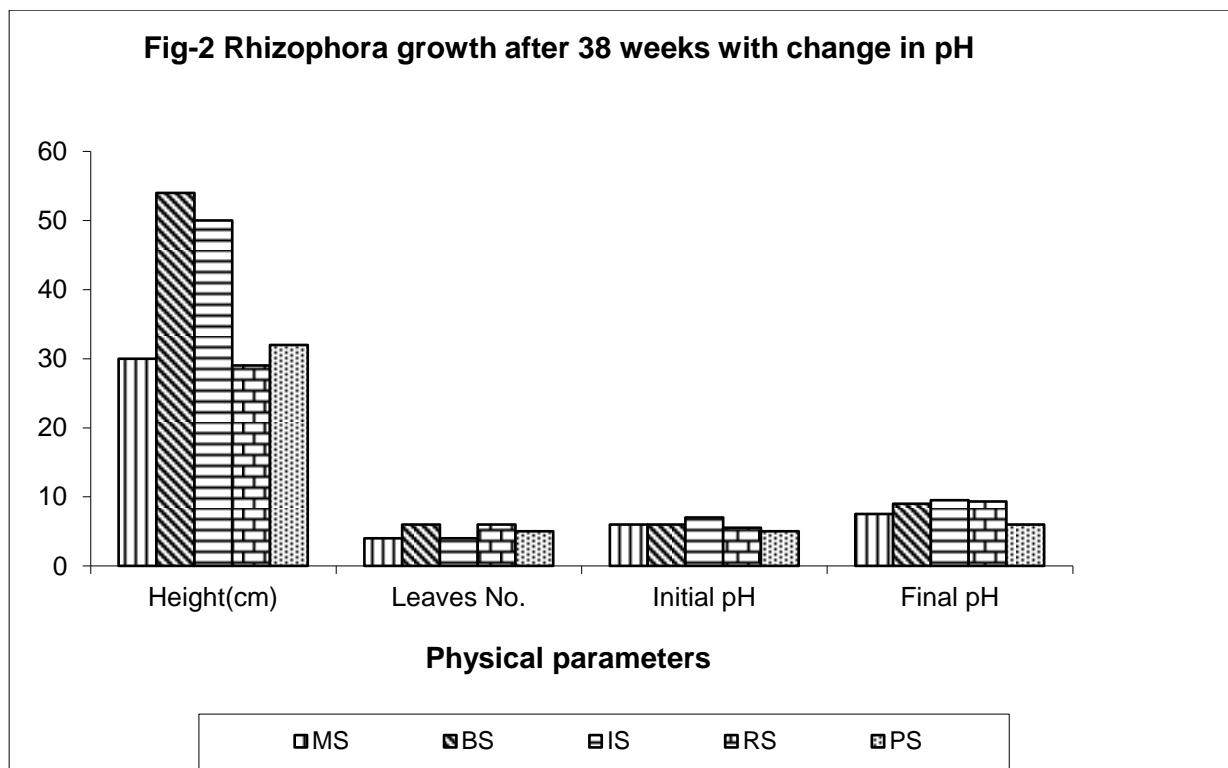
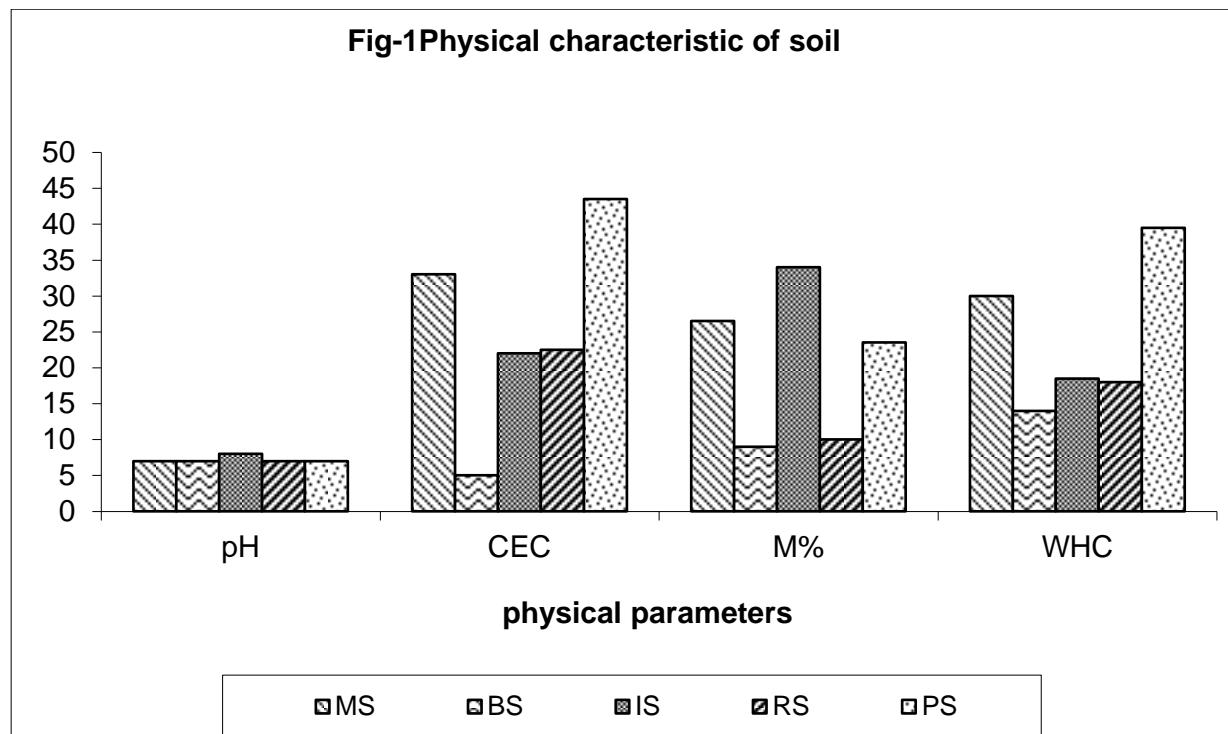
Rhizophora mucronata, a member of family Rhizophoraceae, has attracted the attention of scientific community during the last decades in India as well as other countries due to the presence of aerial root and velamen tissue. However, physiological understanding of the behaviour of *Rhizophora mucronata* plant under edaphic requirement for the growth, productivity, phenology and chemical constituents of the component parts of plant. In the present study an attempt has been made to analyse the sustenance of *Rhizophora mucronata* under changed physical and chemical characteristics of soil from different provenances of U.P., Uttarakhand and its native soil besides alien non-coastal climatic condition (as at Meerut, average temperature range during the year being 30-35°C and humidity being 70-75%). Besides modification of soil fertility characteristics of the soil, the growth pattern of *Rhizophora mucronata* as against native soil-native climate.

MATERIALS AND METHODS

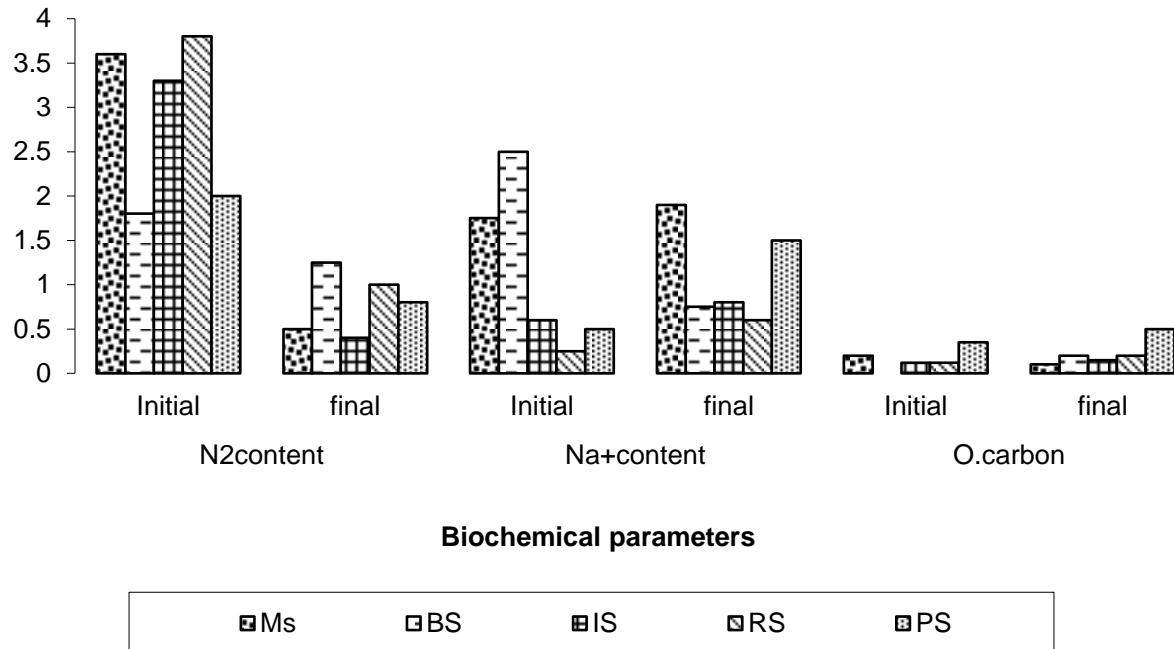
Rhizophora mucronata seedling for the present study were procured from Pandi pallam, Amalapuram (A.P.) and certified pulse material from seed store. The *Rhizophora mucronata* material and seed material were sown in soil of different provenances of U.P. (Roadside, Polluted and Irrigated), Uttarakhand (Barren) and its native soil (as control). Whereas the pulse crop *Pisum sativum* was sown in irrigated field soil. In *Rhizophora mucronata* after 38 weeks of establishment following parameters were studies for finding out the modification in soil due to respective plant growth.

Physical parameters: Height of the plants, No. of leaves/ plant, size of leaf for comparison of growth status of plant.

Soil parameters before sowing and after removal of plant:



1. Total N₂ content (Snell and Snell, 1944)
2. Na⁺ content (Pratt., 1990)

Organic carbon (Datta *et al.*, 1962)


RESULTS AND DISCUSSION

It is clear from the fig.(1-4) that barren soil of Uttarakhand with minimal organic matter, CEC (Cation Exchange Capacity), WHC (Water Holding Capacity), Moisture% and total N₂ exhibited best growth of *Rhizophora mucronata* in Meerut climate (30-35°C and RH 70-75%). Barren soil also exhibited maximum Na⁺ uptake by the plant whereas the plant did not take up Na⁺ from the mangrove soil. Rest of the soils extracted out Na⁺ from the seedling. The normal soil (Irrigated) initially at pH- 8.0 after the growth of pulse crop (*Pisum sativum*) lowered down the pH with increased CEC in contrast to the previous observations and also lost OM (organic matter) by 50%.

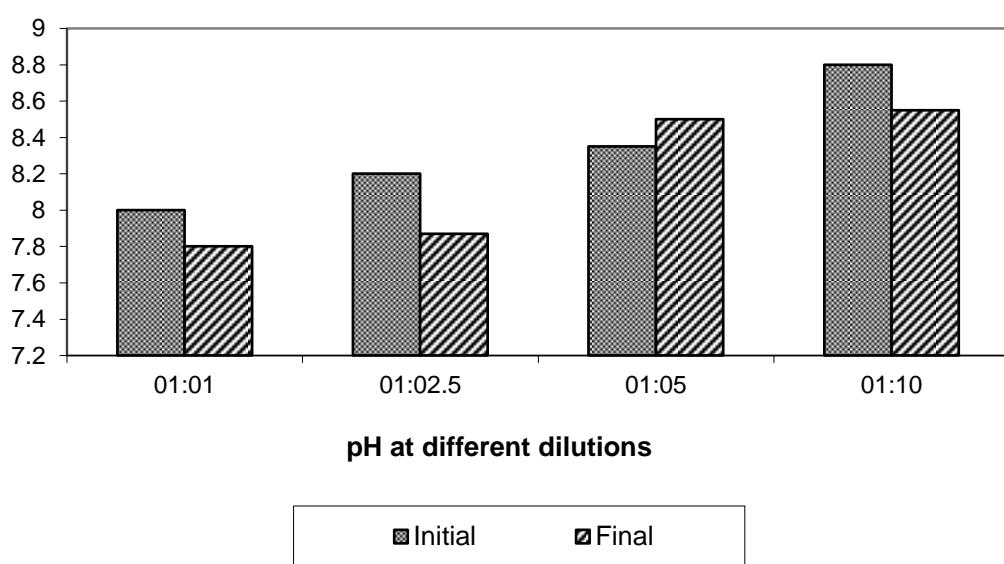

Wetland plant like *Rhizophora* when grown in the barren wetland of Uttarakhand may raise the Na⁺ content and pH, instead of reclamation of OM (organic matter) of the soil. Legume crop plants like *Pisum* reduce the pH of alkaline soil and *Rhizophora* increases its further beyond tolerance limit of other plants.

Fig-3 Modification in chemical nature of soil after 38 week of Rhizophora growth

Fig-4 Changes in soil characteristics after 90 days of *P. sativum* growth

CONCLUSION

Using the wetland plant like *Rhizophora*, to recover organic matter of barren wetland of Uttarakhand can raise the Na^+ content and pH to further ruin the soil, although *Rhizophora* can grow well.

Legume crop plant like *Pisum* reduce the pH of alkaline soil and *Rhizophora* increases its further beyond the tolerance limit of other plants.

ACKNOWLEDGEMENTS

Authors wish to thank Head, Department of botany, J.V. College Baraut for providing Facilities in conducting the experiments.

REFERENCE

- Datta, N.P.; Khera, M.S. and Saini, T.R.** (1962). A rapid colorimetric procedure for the Determination of thye organic carbon in the soil. *J. Indian Soc. Soil Sci.*, **10**: 67-74.
- Hau, Ding.** (1958). Rhizophoraceae (Revision) in flora Malesiana, Van steenis, *C.G.G.J. (ed) ser 1.5*: 429-493.
- Pratt, D.; Fathi-Ettai, R.A.** (1990). A variation in organic and inorganic mineral components in young Eucalyptus seedlings under salinity stress. *Physiol. Plant*, **79**: 479-486.
- Raju, J.S.S.N.** (1982). Flora and vegetation of Konaseema and morphological studies in Rhizophoraceae. *Ph.D. Thesis, Meerut University*.
- Schimper, A.F.W.** (1898). In Engler and Prantl, *Die Nat. Pflanzenfamilien* 3, **7**: 420-450.
- Snell, F.D. and Snell, C.T.** (1954). *Colorimetric methods of analysis*. Vol.3 organic I. Robert E. Kreiger Publishing company, Huntington New York.