

# EFFICACY OF CERTAIN FUNGICIDES AND BIOAGENTS AGAINST ANGULAR LEAF SPOT OF COTTON (*GOSSYPIUM HIRSUTUM L.*) UNDER FIELD CONDITIONS

Rakesh Kumar Prajapati\*, Sobita Simon and Shafaat Ahmad

Department of Plant Protection, Sam Higginbottom Institute of Agriculture, Technology & Sciences  
(Deemed to be University) Allahabad 211007  
Email : [rakeshprajapati0116@gmail.com](mailto:rakeshprajapati0116@gmail.com)

Received-17.02.2015, Revised-04.03.2015

**Abstract :** An experiment was conducted during *kharif* season of 2011-12 central research plot of SHIATS. To find out the efficacy of certain fungicides and bio-agents against *Xanthomonas campestris* pv *malvaciarum* of cotton different treatment of Bordeaux mixture, Neem cake, *Pseudomonas fluorescens*, Streptomycin, *Bacillus subtilis*, Mancozeb, Carbendazim was used as foliar spray. Result that the foliar spray of Streptomycin @ 0.025% was found most effective in reducing the disease severity (17.03%) at 120 DAS, (18.67%) 150 DAS, (20.59%) at 180 DAS and increased yield (29.10 q/ha) at harvest.

**Keyword :** *Xanthomonas campestris* pv. *malvaciarum*, Fungicides, Bio-agents

## INTRODUCTION

Cotton (*Gossypium hirsutum* L.) is the “White Gold” or the “King of Fibres” enjoys a predominant position amongst all cash crop in India. (Chattannavar, *et al.* 2010). Cotton is one of the most important crops in several part in the world. The primary necessities of human beings is food, secondary cloth for cover his body. Cotton is full fills the secondary necessities. For the manufacturing of cloths, silk, wood, synthetic fibre etc. cropped fiber are used, but 70% total production of cloths are produced by fiber of cotton. After destruction of fiber in cotton, the cotton seed are also used for foods of animals. After destruction the oil other part khali are used for the burning process with dry wood. Its levies can also be used for mannuar 1 kg cotton stalks which is complete by cellulose helps for growing 500g. mushroom which is full the protein in the food. The cotton is also known as “white cotton.” (Ahlawat and Omprakash, 2003). Angular leaf spot or black arm of cotton is the most serious bacterial disease of this crop. The disease was first reported from Alabama State of USA in 1891. In India the disease was first observed in Tamil Nadu in 1918. Several epidemics of the disease were reported during 1948-1952 in Tamil Nadu which resulted in rejection of very promising cotton varieties of all the four species of *Gossypium*. (Singh, 2005). The spread of disease depends much upon climatic condition. In rainy weather, the leaves and stems are attacked, especially when the rains are heavy and accompanied by strong winds. The pathogen is

carried by wind-driven rain on to the plants. The most important factors favourable to the pathogen are high relative humidity and high air temperature. (Pandey, 2011). Biological agents has promising results in cotton chemical prove to be more effective but with the growing awareness of chemicals, integrated use of bioagent and chemical seems to be the best method of management. “Efficacy of certain fungicides and bio-agents against angular leaf spot of cotton (*Gossypium hirsutum* L.) under field conditions.”

## MATERIAL AND METHOD

A field trial was conducted to check the efficacy of foliar spray with fungicides and bio-agents on Angular leaf spot of cotton at the research plot of the Department of Plant Protection, Sam Higginbottom Institute of Agriculture, Technology & Sciences (deemed to be university) Allahabad. The selected field area was well prepared and plot marked as per the lay out plan. The field was dug up, weeds cleaned and the soil was pulverized and the total area was divided into 24 plots. The experiment was analysed by using RBD (randomized block design) with three replication in a plot size 3x2m<sup>2</sup>. T<sub>1</sub>- Bordeaux mixture @, T<sub>2</sub>- Neem cake @, T<sub>3</sub>- *Pseudomonas fluorescens* @, T<sub>4</sub>- Streptomycin @, T<sub>5</sub>- *Bacillus subtilis* @, T<sub>6</sub>- Mancozeb @, T<sub>7</sub>- Carbendazim @ and the untreated control was used as foliar spray. Observation recorded were disease intensity on leaf at 90, 120, 150, 180 DAS and yield (q/ha).

**Disease intensity (%) was calculated by using the following formula**

$$\text{Disease intensity (\%)} = \frac{\text{Sum of all individual rating}}{\text{Total no. of rating} \times \text{maximum disease grade}} \times 100$$

\*Corresponding Author

## RESULT AND DISCUSSION

In the present study, the result of experiment conducted to evaluate the "Efficacy of certain fungicides and bio-agents against angular leaf spot of cotton (*Gossypium hirsutum* L.) under field conditions. Under the appropriate heading carried out

in *kharif* season 2011-2012 to assess the plant height, number of branches, number of leaf, disease intensity and cost benefit ratio of crop under field condition. The table comprising of data recorded during the experimental period and suitable figures illustrates the noted variation.

**Table 1.** Effect of different fungicides and bio-agents against angular leaf spot of Cotton (*Gossypium hirsutum* L.) on disease intensity (%) at different intervals

| Treatment No.  | Fungicides and bioagents       | Concentration    | Disease intensity (%) |               |                |                 |
|----------------|--------------------------------|------------------|-----------------------|---------------|----------------|-----------------|
|                |                                |                  | Before spray          | After I spray | After II spray | After III spray |
|                |                                |                  | 90 DAS                | 120 DAS       | 150 DAS        | 180 DAS         |
| T <sub>1</sub> | Bordeaux mixture               | 0.25%            | 14.37                 | 17.77         | 20.29          | 23.26           |
| T <sub>2</sub> | Neem Cake                      | 0.50%            | 15.55                 | 21.03         | 25.48          | 30.67           |
| T <sub>3</sub> | <i>Pseudomonas fluorescens</i> | 20 g/l.          | 14.37                 | 17.77         | 20.44          | 23.85           |
| T <sub>4</sub> | Streptomycin                   | 0.025%           | 13.77                 | 17.03         | 18.67          | 20.59           |
| T <sub>5</sub> | <i>Bacillus subtilis</i>       | 0.01%            | 15.40                 | 20.14         | 25.18          | 29.18           |
| T <sub>6</sub> | Mancozeb                       | 0.20%            | 15.25                 | 20.14         | 24.59          | 28.74           |
| T <sub>7</sub> | Carbendazim                    | 0.20 to 0.30%    | 14.74                 | 19.40         | 23.40          | 26.96           |
| T <sub>0</sub> | Control (untreated)            | -                | 16.59                 | 21.47         | 28.44          | 38.74           |
|                |                                | F-test           | NS                    | S             | S              | S               |
|                |                                | S. Ed. (±)       | -                     | 0.34          | 0.13           | 0.27            |
|                |                                | C. D. (P = 0.05) | -                     | 0.73          | 0.29           | 0.58            |

### Disease intensity (%) at 120 DAS

The minimum disease intensity (%) was recorded at 60 DAS T<sub>4</sub>- Streptomycin @ 0.025% (17.03) followed by T<sub>1</sub>- Bordeaux mixture @ 0.25% (17.77), T<sub>3</sub>- *Pseudomonas fluorescens* @ 20g/l (17.77), T<sub>7</sub>- Carbendazim @ 0.20 to 0.30% (19.40), T<sub>6</sub>- Mancozeb @ 0.20% (20.14), T<sub>5</sub>- *Bacillus subtilis* @ 0.01% (20.14), T<sub>2</sub>- Neem cake @ 0.50% (21.03) over T<sub>0</sub>- control (21.47).

All the treatment were significant over the control but (T<sub>0</sub>, T<sub>2</sub>), (T<sub>5</sub>, T<sub>6</sub>) and (T<sub>3</sub>, T<sub>1</sub>) were non significant with each other.

### Disease intensity (%) at 150 DAS

The minimum disease intensity (%) was recorded at 90 DAS T<sub>4</sub>- Streptomycin @ 0.025% (18.67) followed by T<sub>1</sub>- Bordeaux mixture @ 0.25% (20.29), T<sub>3</sub>- *Pseudomonas fluorescens* @ 20g/l (20.44), T<sub>7</sub>- Carbendazim @ 0.20 to 0.30% (23.40), T<sub>6</sub>- Mancozeb @ 0.20% (24.59), T<sub>5</sub>- *Bacillus subtilis* @ 0.01% (25.18), T<sub>2</sub>- Neem cake 0.50% (25.48) over T<sub>0</sub>- control (28.44).

All the treatment were significant over the control but (T<sub>3</sub>, T<sub>1</sub>) were non significant with each other.

### Disease intensity (%) at 180 DAS

The minimum disease intensity (%) was recorded at 90 DAS T<sub>4</sub>- Streptomycin @ 0.025% (20.59) followed by T<sub>1</sub>- Bordeaux mixture @ 0.25% (23.26), T<sub>3</sub>- *Pseudomonas fluorescens* @ 20g/l (23.85), T<sub>7</sub>- Carbendazim @ 0.20 to 0.30% (26.96), T<sub>6</sub>- Mancozeb @ 0.20% (28.74), T<sub>5</sub>- *Bacillus subtilis* @ 0.01% (29.18), T<sub>2</sub>- Neem cake @ 0.50% (30.67) over T<sub>0</sub>- control (38.74).

All the treatment were significant over the control but (T<sub>5</sub>, T<sub>6</sub>) were non significant with each other.

In the present study the chemicals tested gave better results for minimizing the PDI. A significant variation of PDI was found among the treatments. All fungicides performed significantly better over the control. Lowest PDI was recorded in streptomycin treated plots. It was statistically similar to Bordeaux mixture, *Pseudomonas fluorescens* is also reported by (Naik and Hiremath, 2003) to be effective in controlling the angular leaf spot of cotton. Against *Xanthomonas campestris* pv. *malvacearum* have reported that streptomycin 0.025 % were significantly superior over control and rest of the fungicides in managing angular leaf spot of cotton have reported that efficacy of *Pseudomonas*

*fluorescens* against angular leaf spot of cotton. The reported that it against better results than check in controlling the diseases. The probable reason for such finding may be that these fungicides and bio-

agent had inhibitory effect on the *Xanthomonas* growth of the bacteria and may have reduced the inoculum density due to which spread and increase in the disease intensity may have been checked.

**Table 2.** Effect of different fungicides and bio-agents against angular leaf spot of Cotton (*Gossypium hirsutum* L.) on yield ( $q \text{ ha}^{-1}$ )

| Treatment No.  | Fungicides and bioagents       | Concentration        | Yield ( $q \text{ ha}^{-1}$ ) |
|----------------|--------------------------------|----------------------|-------------------------------|
| T <sub>1</sub> | Bordeaux mixture               | 0.25%                | 26.74                         |
| T <sub>2</sub> | Neem Cake                      | 0.50%                | 23.04                         |
| T <sub>3</sub> | <i>Pseudomonas fluorescens</i> | 20 g/l.              | 25.69                         |
| T <sub>4</sub> | Streptomycin                   | 0.025%               | 29.10                         |
| T <sub>5</sub> | <i>Bacillus subtilis</i>       | 0.01%                | 23.26                         |
| T <sub>6</sub> | Mancozeb                       | 0.20%                | 24.44                         |
| T <sub>7</sub> | Carbendazim                    | 0.20 to 0.30%        | 24.93                         |
| T <sub>0</sub> | Control (untreated)            | -                    | 15.28                         |
|                |                                | F-test               | S                             |
|                |                                | S. Ed. ( $\pm$ )     | 0.22                          |
|                |                                | C. D. ( $P = 0.05$ ) | 0.47                          |

The maximum yield ( $q/\text{ha.}$ ) was recorded in foliar spray the decreasing order of yield ( $q/\text{ha.}$ ) between different treatments is an follows. T<sub>4</sub>- Streptomycin @ 0.025% (29.10) followed by T<sub>1</sub>- Bordeaux mixture @ 0.25% (26.74), T<sub>3</sub>- *Pseudomonas fluorescens* @ 20g/l (25.69), T<sub>7</sub>- Carbendazim @ 0.20 to 0.30% (24.93), T<sub>6</sub>- Mancozeb @ 0.20% (24.44), T<sub>5</sub>- *Bacillus subtilis* @ 0.01% (23.26), T<sub>2</sub>- Neem cake @ 0.50% (23.04) and T<sub>0</sub>- control (15.28). Are statistically significant over control. All the treatment were significant over the control.

The seed cotton yields among the treatments were significant. The highest grain yield was recorded in T<sub>4</sub> streptomycin 0.025% (29.10  $q/\text{ha.}$ ), followed by T<sub>1</sub> (26.74  $q/\text{ha.}$ ), T<sub>3</sub> (25.69  $q/\text{ha.}$ ), T<sub>7</sub> (24.93  $q/\text{ha.}$ ), T<sub>6</sub> (24.44  $q/\text{ha.}$ ), T<sub>5</sub> (23.26  $q/\text{ha.}$ ) as compared to control T<sub>0</sub> (15.28  $q/\text{ha.}$ ).

## CONCLUSION

Based on the result it was from that streptomycin as foliar spray was most effective effective against angular leaf spot of cotton. Three spray of streptomycin @ 0.025% were found effective in reducing the disease intencity and increasing the

yield. Streptomycin is an important antibiotic for the management of bacterial disease.

## REFERENCES

**Aneja, K. R.** (2004). Experiment in microbiology, Plant pathology and bacteriology (4<sup>th</sup> Ed). New age International P (Ltd). Publisher, New Delhi, pp 437-450.

**Ahlawat I.P.S. and Omprakash** (2003). Principels of Agronomy & Crops, Rama Publication House Merut pp. 180.

**Chattannavar, S.N.; Hosagourar, G.N. and Ashtaputre, S.A.** (2010). Crop loss estimation due to foliar disease in cotton, Journal Agric. Sci.,23 (4) : (602-605).

**Naik, S.T. and Hiremath, R.V.** (2003). Management of important diseases of cotton in high rainfall (Malad) tract of Karnataka, Journal Agric. Sci. 16(4):620-623).

**Pandey, B.P.** (2011). Book Plant Pathogen, S. Chand & Company Ltd. pp. 336.

**Singh, R.S.** (2005). Plant diseases, Eighth Edition pp. 54.

