

ASSESSMENT OF HONEY DEW EXCRETION BY NON -TARGET BPH, *NILAPARVATA LUGENS* STAL. ON DIFFERENT IR-64 BT RICE EVENTS

Gajendra Kumar*¹, Shanjay Sharma¹, G. Chandel² and Randeep Kumar Kushwaha¹

¹Department of Entomology, CoA, IGKV, Raipur, Chhattisgarh, India-492012

²Department of Plant Molecular Biology & Biotechnology, CoA, IGKV, Raipur, Chhattisgarh India-492012

Received-11.08.2016, Revised-26.08.2016

Abstract: The experiment was undertaken at greenhouse of Entomology and Department of Plant molecular biology & biotechnology, CoA, Raipur during 2014 and 2015. Area marked due to honey dew excretion by BPH under different IR64 Bt rice events ranged from 15.52 to 24.85 mm². The maximum marked area (24.85 mm²) was observed in IR-64-C followed by TN-1-C (23.58 mm²) with minimum in Ptb-33-C (15.52 mm²) during 2014. Whereas during 2015, new starved female was released and new filter paper was kept inside the funnel to receive the honey dew in all the rice events were ranged from 11.72 to 20.43 mm². The maximum marked area (20.43 mm²) was observed in IR-64-4 followed by IR-64-1 and TN-1-C (23.58 mm²), respectively and minimum in Ptb-33-C (11.72 mm²). On the basis of two years, pooled mean of honey dew area marked under different rice events was ranged 13.62 to 21.43 mm². The highest honey dew excreted on IR64 Bt events was noticed (21.43 mm²) in IR-64-4 followed by TN-1-C (20.84 mm²) and minimum in Ptb-33-C (13.62 mm²) within 24hrs. releasing of BPH. The descending order of honey dew excretion by starved female on Bt events was as IR-64-4>TN-1-C>IR-64-C>IR-64-1>IR-64-2>Ptb-33-C. The area of honey dew excretion by female on Bt rice and on non-transgenic control rice plants did not differ significantly.

Keywords: Bt protein, Non-target insect BPH, Honey dew excretion

INTRODUCTION

Rice is the most remunerative crop stands first among all food grain and is staple food for more than half of world's population. Insect pest are one of the major constraints of high tech agriculture and pesticides use is necessary. The transgenic plants expressing insecticidal properties are becoming environmentally safe alternatives to chemical pesticides. Genetically modified crop containing crystal protein from the bacterium *Bacillus thuringiensis* (Bt) was grown on 26.3 million ha worldwide in the year 2005 (James, 2005). Bt rice has the potential to eliminate yield losses caused by lepidopteron pests up to 2%-10% of Asia's annual rice yield of 523 million tons (High *et al.*, 2004). Genetically modified crops had provided economic benefits to growers and also offer a promising alternative to chemical insecticides for control of lepidopteran pests in rice (Zhu, 2001; High *et al.*, 2004). Zhou *et al.*, (2004) had detected the impact of Bt rice on non -target *Nilaparvata lugens* and he did not find any difference in feeding and oviposition behavior. In recent years, rice stem borers had developed resistance to some most commonly used insecticides in China and other rice growing countries. The transgenic rice on target lepidopteran pests is an important tool both for pest management and insecticide resistance management. The Bt rice has effectively controlled the three species of stem

borer (*C. suppressalis*, *S. incertulas*, *S. inferens*) and leaf folder (*C. medinalis*) as reported by Tuet *et al.* (2000). The rice field has highly diverse and interlinked insect pest species of herbivores, predators, and parasitoids. These are an essential component of biological control and are one of the fundamentals of insect management strategies in rice (Schoenly *et al* 1998). This importance was previously exemplified by the outbreaks of brown plant hopper, *Nilaparvata lugens* (Homoptera:Delphacidae) that resulted from the excessive use of insecticides in early 1997 (Gallagher *et al* 1994). For biological control in managing the balance of insect pest population in rice fields, it is essential to assess the effect of novel insecticides such as Bt on non-target insects and their predators/parsitoids. Mirid bug, *Cyrtorhinus lividipennis* (Hemiptera: Miridae) survives predaciously by feeding on *N. lugens* larvae and nymphs in the rice ecosystem. Insight into the potential effect of the deployment of transgenic Btrice on the population dynamics of other non-target insects and their predatory organisms can be gained by evaluating the effects of Bt toxins on life-history parameters of brown planthopper and mirid bug feeding on Bt rice and control non-Bt rice.

This study was undertaken to assess the effect of Bt toxins on life-history parameters of brown plant hopper, a non-target insect of rice to understand the secondary exposure of Bt toxins. *N. lugens* is a major pest of rice and an important constituent of the

*Corresponding Author

population structure of the rice growing area of Asian countries.

MATERIAL AND METHOD

Experimental details

The experimental was undertaken at glasshouse of Entomology and Department of Plant molecular biology & biotechnology, College of Agriculture, Raipur during 2014 and 2015.

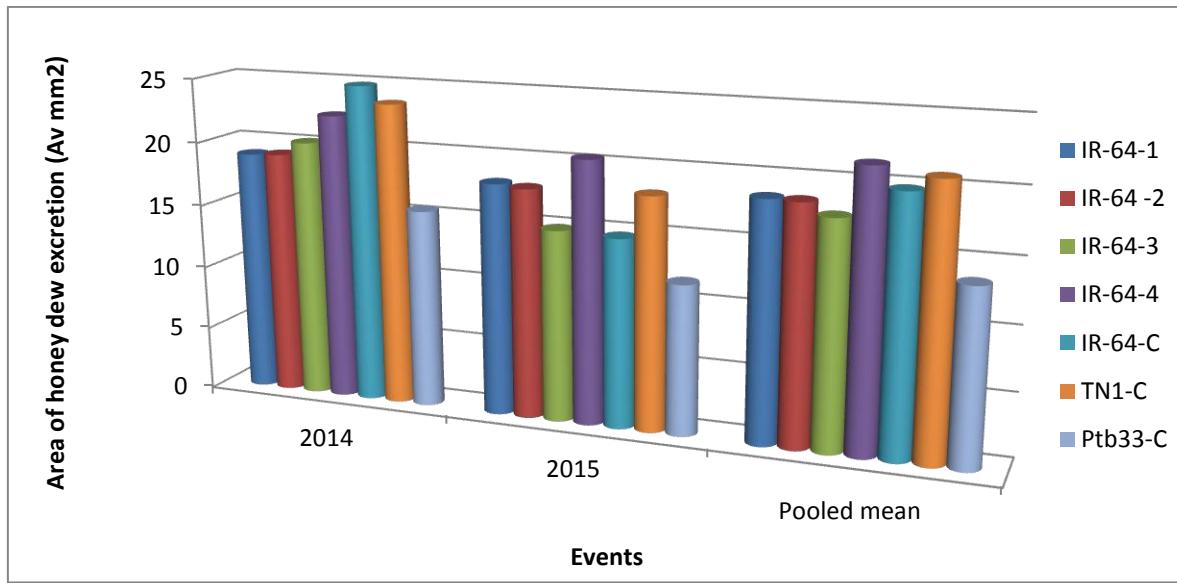
Mass culture of BPH

The macropterous females of *N. lugens* 50 to 100 per field were collected from Entomological rice fields of IGKV, Raipur. These females were pooled and allowed to oviposit on caged rice plants of Taichung Native-1 (TN-1), a rice genotype that does not contain any genes with resistance against these pest species. From the resulting progenies, colonies were maintained on susceptible rice variety TN-1. The culture of BPH is being maintained throughout the experimental period in the air cooled glass house in the Department of Entomology at $30^{\circ}\text{C} \pm 5^{\circ}\text{C}$ on potted TN1 variety of rice. BPH were reared on 40 to 45 days old potted TN1 plants inside a rearing cage of 75 x 75 x 75 cm size, consisting of wooden frame with small window on front side and fine wire mesh on top and other sides. Cages were mounted on cemented platform having water level of 7.5 cm. Potted TN1 plants were placed inside the rearing cages for egg laying along with at least 60 pairs of BPH per pot. After 2-3 days the females start egg laying inside the leaf sheath at the basal portion of paddy plants. After the emergence of nymphs from plants BPH pairs were transferred to another TN1 pots with the help of aspirator for egg laying. The colonies were grown on an artificial diet before releasing them onto transgenic *Bt* rice plants. The BPH population was taken from mass culture maintained in the glasshouse. Standard evaluation

technique developed by IRRI was adopted to evaluate different Bt/non Bt lines. Observations were recorded on the honeydew excretion for all the rice events.

Collection and quantification of honeydew of *N. lugens*

The parafilm sachet method as described by Pathak *et al.* (1982) was used to collect honeydew from the female adults of *N. lugens* fed on transgenic *Bt* rice and their counterpart control rice lines. Three sachets were attached to the stems of each plant. Plants were grown in the transgenic greenhouse arranged in a complete block design (CBD) at $25\text{-}30^{\circ}\text{C}$ under a natural photoperiod of approximately L12:D12. Three fifth instar nymphs were randomly selected from *N. lugens* colonies maintained on caged TN-1 rice plants and starved for 2 hrs were then placed singly into inverted plastic cups enclosing a plant stem and allowed to feed for 24 hrs. After 24 hrs, the filter papers were collected and the area of honeydew spots on the filter paper was determined by placing the transparent sheets with 1 mm grids on top of the filter paper. Blue and white spots, produced by alkaline and acidic honeydew deposition, respectively, were determined separately. The honeydew excreted was collected with the help of a micropipette and placed into 1.5-ml micro centrifuge tubes. The honey from each plant was pooled and stored at $-20^{\circ}\text{C}/-80^{\circ}\text{C}$. There were three replicates for each transgenic line and three for their control plants. The presence of Cry protein in the honeydew secretions was analyzed using the CryIAb/CryIAc ELISA kit (Envirologix, USA) at 450 nm as per the manufacturer's instructions. Reading for each replication was recorded separately. Honeydew production on rice plants at the maximum tillering stage was quantified using the bromocresol green technique (Pathak and Heinrich 1982).


Table 1. Honeydew excretion by BPH on different transgenic rice (including control) lines during 2014 and 2015

Transgenic rice	Honeydew excretion by BPH within 24h (mm^2)		
	2014	2015	Pooled mean
IR-64-1	18.98 (4.41)	18.10 (4.31)	18.54
	19.10 (4.43)	17.89 (4.29)	18.49
IR-64-3	20.18 (4.55)	14.93 (4.93)	17.56
	22.42 (4.79)	20.43 (4.58)	21.43
IR-64-4			

IR-64-C	24.85 (5.03)	14.74 (4.90)	19.80
TN1-C	23.58 (4.91)	18.10 (4.31)	20.84
Ptb33-C	15.52 (4.00)	11.72 (3.50)	13.62
SEM	4.32	2.90	
CD at 5%	7.57	5.09	
CV (%)	36.23	30.37	

*The values in parenthesis are square root transformed values

* Three replications for each treatment

Fig.1. Honeydew excretion by BPH on different transgenic rice (including control) lines during 2014 and 2015

RESULT AND DISCUSSION

Area marked due to honeydew excretion by BPH under different IR64 Bt and non-Bt events ranged from 15.52 to 24.85 mm². The maximum marked area (24.85 mm²) was observed in IR-64-C followed by TN-1-C (23.58 mm²) with minimum in Ptb-33-C (15.52 mm²) during 2014. Whereas during 2015, new starved female was released and new filter paper was kept inside the funnel to receive the honeydew in all the treatment and replications were ranged from 11.72 to 20.43 mm². The maximum marked area (20.43 mm²) was observed in IR-64-4 followed by IR-64-1 and TN-1-C (23.58 mm²), respectively and IR-64-4 (22.42 mm²) and minimum in Ptb-33-C (11.72 mm²). On the basis of two years, pooled mean of honeydew area marked under different treatments was ranged 13.62 to 21.43 mm². Maximum honeydew excreted on IR64 Bt and non-Bt events was noticed (21.43 mm²) in IR-64-4 followed by TN-1-C (20.84 mm²) and minimum in Ptb-33-C (13.62 mm²) within 24hrs releasing of BPH (table-1 & Fig.-1).

The honeydew excreted by females of *N. lugens* was quantified by measuring the area of white and blue spots on bromocresol green-treated filter paper. White spots, indicating the deposition of acidic honeydew from xylem feeding, were significantly fewer in the transgenic Bt rice lines than in the corresponding control plants. whereas, the area of blue spots indicating the feeding from the phloem region was significantly higher in transgenics than in the control rice plants. Our results clearly indicate that BPH feeding on Bt rice has shown a preferred feeding behavior from phloem tissues. The results observed with the honeydew excreted by *N. lugens* females feeding on Bt rice observed are similar to those in an earlier study by Bernal *et al* (2002) where toxic protein was detected in honeydew and phloem tissues of Bt rice plants.

On the basis of honeydew area marked under different treatments at 48hrs releasing of BPH, it may be stated that starved female feeding on IR-64-4 Bt plant, honeydew excretion increased gradually and it was higher to other Bt and non-Bt control whereas, in case of Ptb-33-C treated plant, the insect start

feeding subsequent but the quantum of feeding was low as compared to other Bt events within 24hrs. The descending order of honey dew excretion by starved female on Bt events was IR-64-4> TN-1-C> IR-64-C> IR-64-1> IR-64-2>Ptb-33-C. All of honey dew excretion by female on Bt rice and on non-transgenic control rice plants did not differ significantly.

REFERENCES

Bernal, C. C., Aguda, R. M. and Cohen, M. B. (2002). Effect of rice lines transformed with *Bacillus thuringiensis* toxin genes on the brown plant hopper and its predator *Cyrtorhinus lividipennis*. *Entomol. Exper.* 102: 21-28.

Gallagher, K. D., Kenmore, P. E. and Sogawa, K. (1994). Judicial use of insecticides deter plant hopper outbreaks and extend the life of resistant varieties in Southeast Asian rice. pp. 599-614. In R. F. Denno and J. T. Perfect (eds.), *Plant hopper: their ecology and management*. Chapman and Hall, New York.

High, S. M.; Cohen, M. B.; Shu, Q.Y. and Altosaar, I. (2004). Achieving successful deployment of Btrice. *Trends in Plant Science*, 9, 286-292.

James, C. (2005). Executive summary: Global Status of Commercialized Biotech/GM Crops: 2005. *ISAAA Briefs*, No. 34, ISAAA: Ithaca, NY.

Pathak, P. K. and Heinrich, E. A. (1982). Bromocresol green indicator for measuring feeding activity of *Nilaparvata lugens* on rice varieties. *Philipp. Entomol.* 11: 85-90.

Pathak, P. K., Saxena, R. C. and Heinrichs, E. A. (1982). Parafilm sachet for measuring honeydew excretion by *Nilaparvata lugens* on rice. *J. Econ. Entomol.* 75: 194-195.

Schoenly, K. G., Justo, Jr. H D, Barrion, A. T., Harris, M. K. and Bottrell, D. G. (1998). Analysis of invertebrate biodiversity in Philippines farmer's irrigated rice field. *Environ. Entomol.* 27: 1125-1136.

Tu, J., Zhang, G., Datta, K., Xu, C., He, Y., Zhang, Q., Khush, G. S. and Datta, S. K. (2000). Field performance of transgenic elite commercial hybrid rice expressing *Bacillus thuringiensis* endotoxin. *Nat. Biotechnol.* 18: 1101-1104.

Zhou, X.; Cheng, J. A.; Hu, Y. and Lou, Y.G. (2004). Effects of transgenic Btrice on the population development of *Nephrotettixcincticeps*. *Chinese Journal of Rice Science*, 19, 74-78.

Zhu, F.Sh.; Chen, H. X. and Lu, Y. Sh. (2001). Outbreak reasons and management technology of *Spodoptera litura* on economic crops. *Plant Prot. Technol. Extens.* 21 (7), 22.