# CONSTRAINTS FACED BY THE FARMERS IN ADOPTION OF BIO-FERTILIZERS AND MANURE IN RICE CROP

M.A. Khan, S.K. Taunk\* and S.S. Porte

Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.) Email: Sktaunk76@gmail.com

Received-13.09.2016, Revised-26.09.2016

Abstract: Being the important crop of Chhattisgarh, rice occupies major share in the rural economy in general and farmers economy in particular. This crop is cultivated here on varied agro-ecological situations. The inputs, particularly nutrients used in cultivating rice are mostly imbalanced with the dominancy of chemical fertilizers causing soil sickness and poor fertility status. Several bio-fertilizers and manures are recommended for inducing as input in rice cultivation but so far the use of these materials is very low and scanty particularly in Chhattisgarh region. Looking to the significance this investigation was conducted in the three villages of Raipur district with 120 respondents. The findings shows that majority of the respondents were belonged to medium-old age group with satisfactory literacy level. The respondents were dominated by the population of other Backward Castes having 5-8 family members. Agriculture with small and marginal size of and holding and poor irrigation availability was common. Medium level of economic motivation and risk orientation was observed. The overall socio economic status of the respondents was mostly low. The knowledge was found quite high but adoption of bio-fertilizers and manures was poor. The important reasons for non adoption of bio fertilizers in rice cropping were poor or non availability, non visibility of results, un-assured quality, lack of knowledge and high cost. Use of compost and FYM were mostly affected by its poor availability in time and required quantity. The suggestions shows that respondents required assured quality and timely availability of bio fertilizers and manures for its higher adoption with credit facility and subsidy.

Keywords: Constraints, Bio fertilizers, Adoption

#### INTRODUCTION

ice is the important staple food as well as crop Rin Chhattisgarh covering more than 70 percent of the cropped area. In Chhattisgarh state the economy of farm families rely mainly on rice because in rainfed areas rice is cultivated as monocropping or followed by relay cropping. In case of perennial assured irrigated situations most of the farmers preferred rice after rice. The reasons may be high average rainfall, bunded field situations, diet pattern, experience and buy back guarantee from government on minimum support price. With the modernization penetrates to the rural environment, the use and application of chemicals in agriculture is increasing rapidly, chemical fertilizers occupied major share among such chemical. The scenario of imbalanced and heavy dose of chemical fertilizers used in agriculture reveals unpleasant situations in so called developed areas. The soils of Chhattisgarh bienlarge fertile and good enough for farming. Regular cultivation of rice in this region especially in Chhattisgarh plains agro-climatic zone using enough chemical fertilizers causes depleting in the organic matter and fertility status of soils. Rice is known for its heavy nutrient uptake characteristics causing deficit in the available nutrients in the soil. The modernization urbanization and decreasing cattle population in the villages, use of manure in farming is also decreasing drastically. It is worthy here to state that most of the phosphatic, potashic and also nitrogenous fertilizers are manufactured by using raw material from natural resources that too are not or limited available in our country. Our billions of foreign currency are expended to by these fertilizers from other countries. Now-a-days due to the residual effect of chemicals in the food and fodder, people attracted towards organic farm produces. All these situations and need of the time compel us to move towards increasing use of organic agri-inputs or farming with combination of chemical, bio-fertilizer and manures. A number of bio-fertilizers and kind of manures are available and recommended for inducing as input in rice cultivation. Popular amongst them are Blue Green Algae (BGA), Phosphorus Solubilizing Bacteria (PSB), Green Manuring (GM) and FYM/Compost. Use of these material not only enhance the productivity of rice but also strengthen the soil health and beneficial for second crop as well. Various agencies were recommended for the use of such bio-origin inputs in rice farming but so far the use of these materials is very low and scantly particularly in Chhattisgarh region. Looking to the significance of these products to the farmer, soil and consumers, the present investigation was undertaken with the following specific objectives;

- 1. To find out the socio-economic profile of rice growers.
- 2. To study the level of knowledge and adoption of various bio-fertilizers and manure in rice crop.
- 3. To find out major constraints in adoption of selected bio-fertilizer and manure in rice crop.
- 4. To obtain the farmer's suggestion for enhancing the use of bio-fertilizers and manure in rice crop.

\*Corresponding Author

## **METHODOLOGY**

This investigation was conducted in the selected IVLP villages viz. Tarra, Chatoud and Donde of Raipur district. From the list of farmers, 40 farmers were selected randomly from each of the selected village. In this way the data were collected from 120 respondents using semi-structured interview schedule. Proper care was observed while selection of respondents so that the farmers included for the intervention on bio-fertilizers under IVLP should be considered as respondent of this study.

## RESULT AND DISCUSSION

Socio-economic characteristics: Before obtaining the constraints, some important characteristics of respondents were studied (Table 1). The findings shows that majority of the respondents were belonged to medium-old age group of 41 to 60 years. Only about 11 per cent of the respondents were below 40 years of age. It shows that youngsters were having less involvement in agricultural operations and most of the farm activities were executed by the middle to old people, which is not supposed to be a good sign for future agriculture. The educational status of farmers was found quite satisfactory because most of them were literate to various levels. As usual, the respondents were dominated by the population of other Backward Castes. Some of them were belonged to general castes and scheduled caste. Still in the villages of Chhattisgarh joint family

system prevails which reveals from the table the most of the families of respondents were having 5-8 members. About 22 per cent of the families of respondents were small in size. Agriculture was found as the major occupation, respondents were also involved in different kind of labour activities for sustaining their livelihood. The situation may be because of small and marginal size of land holding amongst most of the respondents. Less than 10 per cent of the respondents were having more than 4 ha of cultivable land. The scenario of irrigation availability is also found poor because more than 57 per cent of the respondents were practicing agriculture without agriculture and only about 12 per cent of them had assured irrigation availability. The findings further reveals that 55 per cent of the respondents were belonged to medium level of economic motivation. Rest of the respondents distributed to high (29%) and low (17%) level of economic motivation. Regarding the risk orientation about 43 and 39 per cent of the respondents belonged to medium and low category, respectively. The overall socio economic status of the respondents shows that 52.5 per cent of them were belonged to low socio-economic status. About 33 and 15 per cent of the respondents were obtained medium and high level of socio economic status, respectively. These features show that bi-enlarge the respondents were economically poor or medium which influence the means and ways of investment in their main occupation i.e. agriculture.

**Table 1.** Socio-economic profile of the respondents.

N=120

| Labic | 1. Socio-economic prome of the respondents. |       | N=120 |
|-------|---------------------------------------------|-------|-------|
| S.    | Characteristics                             | Freq. | %     |
| No.   |                                             |       |       |
| 1.    | Age                                         |       |       |
|       | UP to 4o yrs                                | 13    | 10.83 |
|       | 41 to 50 yrs                                | 51    | 42.50 |
|       | 51 to 0 yrs                                 | 52    | 43.33 |
|       | Above 60 yrs                                | 04    | 03.34 |
| 2.    | Educational status                          |       |       |
|       | IIIiterate                                  | 08    | 06.67 |
|       | Up to Primary School                        | 56    | 46.67 |
|       | Up to Secondary School                      | 38    | 31.66 |
|       | UP to Hr. Sec. School                       | 15    | 12.50 |
|       | College educated                            | 03    | 02.50 |
| 3.    | Caste                                       |       |       |
|       | Scheduled Tribes                            | 02    | 01.67 |
|       | Scheduled Castes                            | 17    | 14.16 |
|       | Other Backward Castes                       | 80    | 66.67 |
|       | General Castes                              | 21    | 17.50 |
| 4.    | Family size                                 |       |       |
|       | Up to 4 members                             | 26    | 21.67 |
|       | 5 to 6 members                              | 41    | 34.16 |
|       | 6 to 8 members                              | 33    | 27.50 |
|       | Above 8 members                             | 20    | 16.67 |
| 5.    | Involvement in occupation                   |       |       |
|       | Agriculture alone                           | 32    | 26.67 |

|     | Agriculture+business         | 16 | 13.33 |
|-----|------------------------------|----|-------|
|     | Agriculture+caste occupation | 14 | 11.67 |
|     | Agriculture+service          | 04 | 03.33 |
|     | Agriculture+labour           | 36 | 30.00 |
|     | Agriculture+other            | 18 | 15.00 |
| 6.  | Land holding                 |    |       |
|     | Up to 1 ha                   | 34 | 28.33 |
|     | 1.1 to 2 ha                  | 46 | 38.33 |
|     | 2.1 to 4 ha                  | 29 | 24.17 |
|     | Above 4 ha                   | 11 | 09.17 |
| 7.  | Irrigation availability      |    |       |
|     | Nil                          | 69 | 57.50 |
|     | Partially                    | 37 | 30.83 |
|     | Assured (Perennial)          | 14 | 11.67 |
| 8.  | Economic motivation          |    |       |
|     | Low                          | 19 | 15.83 |
|     | Medium                       | 66 | 55.00 |
|     | High                         | 35 | 29.17 |
| 9.  | Risk orientation             |    |       |
|     | Low                          | 47 | 39.17 |
|     | Medium                       | 51 | 42.50 |
|     | High                         | 22 | 18.33 |
| 10. | Socio-economic status        |    |       |
|     | Low                          | 63 | 52.50 |
|     | Medium                       | 39 | 32.50 |
|     | High                         | 18 | 15.00 |

Knowledge and adoption level about selected biofertilizers/ manures: The detailed findings compiled in table 2 shows the figures of knowledge and adoption prevails for bio-fertilizers and manures amongst the respondents. Regarding knowledge, the table shows that respondents were having good knowledge about the application of compost/FYM, while fair knowledge was recorded about BGA and Green Manure (GM). Less than 40 per cent knowledge was obtained about the use of Phosphorus Solubilizing Bacteria (PSB) in rice crop. Accordingly the distribution of respondents is presented in different category shown in the table. In this way the total knowledge about bio fertilizers and manure used in rice cultivation was found about 61 per cent. This increase in overall knowledge level amongst the respondents was highly influenced by the knowledge of FYM/ compost which is a traditional practice in this region hence farmers are well aware about its use in rice cropping.

The findings related to level of adoption about bio fertilizers and manure is given in the same table. It is clear from the table that the cumulative adoption level (28.47%) of different bio fertilizers and manure was quite low amongst the respondents in rice cropping. Adoption of FYM/manure was recorded 50.83 per cent. The other important bio fertilizers were accounted about 28, 21 and 14 per cent adoption of BGA, GM and PSB, respectively. About 48 per cent of the respondents reported not adopting the bio fertilizers and manures in rice farming, this feature dominated by the non adoption of PSB and GM and BGA by the respondents. The high level of adoption of bio fertilizers and manure was done by only 6.45 per cent of the respondents.

**Table 2.** Distribution of respondents according to their knowledge and adoption of selected bio-fertilizers/manure.

| Particulars | Nil   |       | Low   |       | Medium |       | High  |       | Average<br>level (%) |
|-------------|-------|-------|-------|-------|--------|-------|-------|-------|----------------------|
|             | Freq. | %     | Freq. | %     | Freq.  | %     | Freq. | %     |                      |
| Knowledge   |       |       |       |       |        |       |       |       |                      |
| BGA         | 7     | 5.83  | 36    | 30.00 | 59     | 49.17 | 18    | 15.00 | 57.78                |
| PSB         | 29    | 24.17 | 53    | 44.16 | 26     | 21.67 | 12    | 10.00 | 39.16                |
| GM          | 12    | 10.00 | 41    | 34.17 | 40     | 33.33 | 27    | 22.50 | 56.11                |
| FYM/        | 00    | 00.00 | 5     | 04.17 | 23     | 19.16 | 92    | 76.67 | 90.83                |
| Compost     |       |       |       |       |        |       |       |       |                      |

| Total   | 48  | 10.00 | 135 | 28.13 | 148 | 30.83 | 149 | 31.04 | 60.97 |
|---------|-----|-------|-----|-------|-----|-------|-----|-------|-------|
| BGA     | 64  | 53.33 | 21  | 17.50 | 26  | 21.67 | 9   | 7.50  | 27.78 |
| PSB     | 85  | 70.83 | 20  | 16.67 | 13  | 10.83 | 2   | 1.67  | 14.44 |
| GM      | 71  | 59.17 | 27  | 22.50 | 18  | 15.00 | 4   | 3.33  | 20.83 |
| FYM/    | 10  | 08.33 | 53  | 44.17 | 41  | 34.17 | 16  | 13.33 | 50.83 |
| Compost | 230 | 47.92 | 121 | 25.21 | 98  | 20.42 | 31  | 6.45  | 28.47 |

Constraints related to adoption of bio-fertilizers and manure: Various constraints reported by the respondents regarding adoption of selected bio fertilizers and manure is presented in table 3. The important reason for non adoption of BGA was the poor and non availability as reported by about 42 per cent of the respondents. Other important constraints for non or low adoption as reported by about 42 per cent of the respondents. Other important constraints for no or low adoption of BGA were un-assured quality, lack of knowledge and confidence, poor suitability to Alfisols, Inceptisols and requirement of stagnant water as reported by about 22,18, 17 and 15 per cent of the respondents, respectively. About half of the respondents reported that they were not having adequate knowledge about use of PSB in rice cultivation. Non visibility of results, un-assured quality and poor availability of PSB were reported to be the other important constraints being faced by about 32, 25 and 22 per cent of the respondents, respectively. Green manuring is one of the important non chemical sources of plant nutrients in rice production. The adoption of GM by the farmers was mostly affected by the high cost and poor availability of GM seed as reported by 37 and 26 per cent of the respondents, respectively. Some of the respondents perceived that green manuring is suitable exclusively for transplanted and irrigated situations due to which they were reluctant in adopting this technology in their rice production procedure. Use of other manures and FYM were mostly inadequate due to its poor availability in time and required quantity. About 43 per cent of the respondents reported that they were not having enough raw materials preparation of FYM/compost in required quantity. These findings clearly indicate that availability with quality is the key for the adoption of manures and bio-fertilizers particularly in rice crop production.

**Table 3.** Distribution of respondents according to the constraints faced by them related to adoption of biofertilizers and manure.

N=120

| BGA         | Particulars                                  | Freq. | Percent | Rank |
|-------------|----------------------------------------------|-------|---------|------|
|             | 1.Lack of knowledge and confidence           | 22    | 18.33   | III  |
|             | 2. Poor/non availability                     | 50    | 41.67   | I    |
|             | 3. Un-assured quality                        | 26    | 21.67   | II   |
|             | 4. Required stagnant water                   | 18    | 15.00   | V    |
|             | 5. Non suitable for Alfisols/Inceptisols     | 21    | 17.50   | IV   |
|             | 6. Lack of experienced labour                | 7     | 5.83    | VII  |
|             | 7. Create confusion with green algee         | 11    | 9.17    | VI   |
| PSB         | 1.Lack of adequate knowledge                 | 59    | 49.17   | I    |
|             | 2. Poor/non availability                     | 26    | 21.67   | IV   |
|             | 3. Un-assured quality/supply of poor quality | 30    | 25.00   | III  |
|             | 4. Effect/results are not visible            | 38    | 31.67   | II   |
|             | 5. Not common in village                     | 14    | 11.67   | VI   |
|             | 6. Poor coverage by media/RAEO               | 16    | 13.33   | V    |
| GM          | 1.Poor availability of GM seed               | 31    | 25.83   | II   |
|             | 2. High cost of GM seed                      | 44    | 36.67   | I    |
|             | 3. Suitable for irrigated situation only     | 23    | 19.17   | IV   |
|             | 4. Poor knowledge of use                     | 16    | 13.33   | VI   |
|             | 5.Suitable for transplanted rice             | 27    | 22.50   | III  |
|             | 6. Required tractor for pudding              | 19    | 15.83   | V    |
|             | 7. Time bound operations required            | 11    | 9.17    | VII  |
| FYM/compost | 1. Poor availability of raw material for     | 51    | 42.50   | II   |
|             | preparation of FYM/compost in required       |       |         |      |
|             | quantity                                     |       |         |      |
|             | 2. High cost of transportation/spreading     | 28    | 23.33   | III  |
|             | 3. Poor availability of FYM/compost in time  | 72    | 60.00   | I    |
|             | and required quantity                        |       |         |      |

**Table 4.** Suggestions of respondents for enhancing the use of bio-fertilizers/ manure

N=120

| S. No. | Suggestions                                                                                   | Freq. | Percent | Rank |
|--------|-----------------------------------------------------------------------------------------------|-------|---------|------|
| 1.     | The availability of bio-fertilizers should be timely and assured.                             | 45    | 37.50   | I    |
| 2.     | Credibility and use of bio-fertilizers can be increased through assured quality.              | 31    | 25.83   | IV   |
| 3.     | Training/Demonstrations need to be organized for the effective use of bio-fertilizers.        | 13    | 10.83   | VI   |
| 4.     | The information should be communicated through various media prior to time of application     | 20    | 16.67   | V    |
| 5.     | These should be made available to the farmers on no cost/low cost at least for trial purpose. | 32    | 26.67   | III  |
| 6.     | Appropriate credit facility should be available for the purchase                              | 38    | 31.67   | II   |

Suggestions of respondents for enhancing the use of bio-fertilizes/ manure: The suggestions pertaining to adoption of bio fertilizers and manures in rice cropping perceived from the respondents are recorded in table 4. It shows that about 38 per cent of the respondents perceived that assured quality and timely availability of bio fertilizers and manures is required for its higher adoption. Availability of credit facility, subsidy and quality measures were having high concern amongst 32, 27 and 26 per cent of the respondents, respectively. Some of the respondents suggested for timely communication involving farmer friendly media. Requirement of training and demonstrations on bio fertilizer were also required by 11 per cent of the respondents.

#### CONCLUSION

The findings concluded that most of the respondents were medium to low socio economic status. The farmers of the region were having adequate knowledge about various bio fertilizers and manures particularly FYM/compost used in rice crop production but its adoption was found quite low due to various reasons. Poor and untimely availability

and improper quality of bio fertilizers were the important constraints which could be overcome by enhancing the quality and timely supply of these items may be on subsidy basis.

## REFERENCES

**Jaiswal, P.K. and Sharma, P.N.** (1999). Constraints in adoption of improved technology of rice. *Mah. J. Ext. Edu.* IX (10): 342-343.

**Kulkarni, V.V., Bhopale, R.S. and Chede, P.N.** (1990). Constraints in adoption of dairy technology by dairy farmers. *Mah. J. Ext. Edu. IX:* 137-140.

Patil, E.R., Desai, B.D. and Gandhi, R.D. (2000). Constraints in adoption of rice technology in Kal irrigation project of Raigad district. *Ind. J. Ext. Edu.* Vol. 36 (1 & 2): 43-47.

**Rao, D.U.M. and Mathur, P.N.** (2002) Prediction of extent of adoption of Blue Green Algal biofertilizer technology by rice growers. *Ind. Res. J. Ext. Edu.* Vol. 2 (1): 101-105.

**Shekhar, D. and Chauhan, J.** (2003). Constraints in adoption of tobacco production technology. *Ind. Res. J. Ext. Edu.* Vol. 3 (1): 28-29.