

EFFECT OF PHOSPHORUS AND ZINC APPLICATION ON YIELD AND NUTRIENT COMPOSITION OF RICE CROP WITH WATER SALINITY

V.P Singh and B. Pal

Department of agriculture Chemistry and soil science R.B.S. College Bichpuri, Agra (U.P) 283105

Abstract: Two year pot experiment were conducted in green house to study the effect of phosphorus doses viz-P-40, P₂-80; P₃-120 kg ha⁻¹. Four levels zinc sulphate viz-Control, Zn₁-25, Zn₂- 50 and Zn₃-75 kg ha⁻¹ and three levels of water salinity viz-EC₀- Control EC₁ 8, and EC₂-16 dSm⁻¹, significantly decreased grain yield with increasing levels of salinity yet increased higher dose of P and Zn. The maximum grain yield was recorded at P₂ (80 p₂₀₅ kg ha⁻¹) and Zn₂ (50 kg ZnSO₄ kg ha⁻¹) and yield to extent of 19.04 and 28.96% and 46.11 and 43.24% during 1st and 2nd years respectively. The incensement of EC significantly decreased P.K. Ca and Zn increased N and Na content (%). The P and Zn application significantly increased the N, K and Ca. However incensement doses of P increased P content (%) but Na & Zn content (%) decreased. While zinc sulphate application enhanced the Zn content (%) and decreased that of P and Na contents.

Keywords: EC, N; P; K, Ca, Na, Zn, Content (%), yield and salinity

INTRODUCTION

Rice is the seed of the monocot plants *oryza Sativa*. As a Cereal gain, it is the most widely consumed staple food for mostly Indian human population, and food security systems play a main role contribution over 40% of the total food grain production and grows in different agro-climate over 45 million hectares but productivity is very low caused by various factor in which main caused fertilization and quantity & quality of irrigation water. The Rice crop generally fertilized by N.P.K. only, Though zinc is equally Key role as it increase yield and is a quality Nutrients. In fact proper application of Zinc improves growth and Nutrients availability Kumar *et. al* .(1999). Natural resource of safe water very limiting in India especially semi-arid tract of Agra region in underground water saline-sodic and its major source of irrigation. The EC of underground water in Agra district various from-0.4 to 48.00 dSm⁻¹ Pal and Tripathi (1978). However, the continuous use of such water would develop salinity hazards Tripathi & Pal (1980). Thus the present experiment was planned to assess the effect of phosphorus and zinc sulphate fertilizer in saline water condition on rice crop.

MATERIAL AND METHOD

In a pot experiment were conducted in green house in the department of Agriculture chemistry & Soil science R.B.S. College Bichpuri, Agra during the session July 1998 and July 1999 on a sandy loame soil having the following properties ECe 2.3 dSm⁻¹, pH-8.5, ESP-7.3. Solable cation (M⁺) [Ca⁺⁺-4.2, Mg⁺⁺-5.3, Na⁺-12.2 and K⁺-0.2]. Soluble anions (M⁻) [CO₃²⁻-Nill, HCO₃⁻-7.3, Cl⁻-6.8, SO₄⁻-8.1]. Organic Carbon 0.14% and available N.P.K. and Zinc in soil 178.0, 12.5, 205 kg ha⁻¹ and 0.56 Mg kg⁻¹

respectively. The experiment Laid out in factorial C.R.D. Design with 3 levels of phosphorus viz-40, 80, 120 kg ha⁻¹, 4 levels of zinc sulphate viz-Control, 25, 50, 75 kg ha⁻¹ and 3 levels of water salinity viz-EC₀, EC-8 and EC-16 dSm⁻¹. Erthen pot of 30 Cm diameter size were filed with 8.0 kg soil. The salinity levels of irrigation water were prepared by dissolving Na₂SO₄, NaCl, CaCl₂, CaCl₂ MgCl₂, Na₂CO₃ and NaHCO₃ in Tub-well water having EC-2.4 dSm⁻¹, Na⁺-14.1, Mg⁺⁺-3.1 and Cl-11.8, HCO₃-8.2 and SO₄-4 mel. The recommended doses of N and K@ 120, 60 Kg ha⁻¹ respectively were applied as through urea, MOP and Two seedling of rice variety(Saket-4). Crop was irrigated with tub-well water just after transplanting and thereafter irrigation was given with treatment water. After 10 days transplanting crop was thinned to one plant in each pot. The data on plant height and grain yield were recorded and chemical analysis of grain after crop harvest.

RESULT AND DISCUSSION

A pot experiment was conducted with rice for two consecutive years for drawing valid conclusion data grain yield and nutrients composition values have been statistically analyzed appended in Table-1 and discussed below.

Effect on grain yield

The grain yield of rice was decreased with enhancing levels of EC in irrigation water. A critical examination of data indicates that each higher level of salinity caused significantly reduction in grain yield of rice as compared to each lower level of salinity during both crop years. Maximum reduction was noted at highest level of E₂(16dSm⁻¹) and resulted reduction to the extent of 52.30 and 51.65% yield over control (EC-0). The EC of water create an

¹Department of Agriculture, K.L. Jain inter College, Sasni, Hathras U.P. 204216.

² Department of Agriculture, Chemistry & Soil science R B S College, Bichpuri Agra UP-283105

ionic imbalance toxic effect which upsets the growth regulatory Mechanism of plants ultimately retards the production, also reported Khandelwal *et al.* (1990). The P₂ doses of phosphorus proved beneficial dose for rice in the present set of treatment. The favourable effect of P fertilization is in accordance with Swarup and Yaduvanshi (2000). Reveals (Table-1) that the grain yield of rice increased with application of Zinc sulphate Significantly. The Zn₂ level (50 Kgha⁻¹) of Zinc Significantly inhaned grain yield over Zn₁ (25 Kgha⁻¹) and Zn₀ (Contral) levels during both the years of experiments and yield extent to 46.11 and 43.24% over Control to 1st and 2nd years. While the Zn₃ (75 kgha⁻¹) level decreased grain yield over Zn₂ level during both crop sessions. But grain yield of rice was significantly increased with Zn₃ over Zn₁ and Zn₀ levels and also Zn₁ increased significantly grain yield over Zn₀ level of Zinc sulphate of two year crop sesion. Hence the Zn₂ level of Zinc Sulphate proved beneficial with respect to grain yield of rice simular resalt was reported Jat and mehra (2007).

Effect of Nutrient Composition

It is evident from Table-1 that the Nitrogen contents in grain of rice was increased markedly with enhancing levels of water salinity Irrespective of the treatment the N Content (%) varied from 1.20 to 1.34 (%) and each increasing level of EC water caused significantly enhancement in N content of grain as compared to each lower levels of EC during both years of experiment. The highest N Content was Noted in highest level of EC (EC8-16Sm⁻¹). Application of phosphorus and Zinc sulphate in rice crop increased N content. Each higher level of P resulted significant enhancement of N as compared to lower levels of P and the Zn₃ (75kgha⁻¹) of Zinc sulphate in creased significantly N content in grain over Zn₀ level of Zinc. In case of Zn₂ level was at par with Zn₃ level of Zinc regard to N content (%) in grain of rice during both year of Study. The Zn₁, also increased N content % of grain over Zn₀ level two year experiments. The phosphorus declined Markedly with saline irrigation water. The ranged P (%) in grain of rice 0.140 to 0.207 and clearly indicate that each increasing level of EC cussed significant reduction in P content (%) in compersion lower levels of EC water. The EC₂ (16 dSm⁻¹) level of salinity proved more harmful in case of P content (%) of rice. The p content (%) in grain improved with application of Pdoses. A critcally examine shows that each increasing level of phosphorus application resulted enhancement of P content (%) in grain of rice both years of experimentation. Its fact that inhaning P dosses increased concentration in soil salution with in turn increased root and plant growth and absorption of P by plant simmular beneficial result of P has been noted by Kumar and Verma (1999). It is evedent to Table-1 that Zinc application

in rice crop was reduced P content (%). Higher doses of Zinc decreased significantly P content (%) in grain of all two respected years. The data recorded of potassium content (%) clear from Table-1 that the higher level of salinity in irrigation water declined K content and varied from 0.381 to 0.609% affected by water salinity. Maximum reduction was noted in highest level of EC 16dsm⁻¹ during two year of the study. An evaluate the data of f P application enhanced K content (%). Each higher levels of P significantly increased K content (%) as compared to lower level of P. It is seen from table-1 that the potassium content was favoared significantly with Zinc application. The Zn₂ (50 kgha⁻¹) of Zinc sulphate increased. signifatly the K content in grain of rice over Zn₀, and also Zn₁ levels. Among the calcium content in grain of rice was negatively affected with increasing level of salt concentration of irrigation water. Irrespective of the treatments the Ca content (%) in grain of rice renged from 0.233 to 0.332 % respectively. The data indicates that the each increasing levels of EC resulted significantly reduction in Ca content of grain as compared to preceding lower levels of EC irrigation water. In the P application shows the increasing of P enhanced Ca content (%) over lower doses of P throughout the experiment caused due to more development of roots and more nutrient site for absorption of due to application. The Zinc fertilization improved the Ca content(%) in grain of rice Maximum Ca content was noted at highest level of Zinc (Zn₃-75kgha⁻¹). Each increasing level of Zinc increased significantly Ca content (%) in rice as compared to lower levels of Zinc during both year of treatments. It is clear from table-1 that the sodium content ranged the irrespective of the treatment from 0.140 to 0.260 (%) were increased significantly with higher levels of salinity. The Na content increasment significantly with each high levels of EC in comparison to lower levels. The EC₂ [16dSm⁻¹] levels proved more beneficial with respect to Na content in rice. Same finding was noted by Lal *et al.* (1999). The Na content (%) significantly increased with decreasing doses of P and Zn as compared to lower levels of P and Zn in grain two years of rice crops. Highest reduction was noted P₃ (120 kgha⁻¹) and Zn3-75kgh⁻¹. These findings are in accordance with those of Sharma 2 Pal (2001). The data indicate (Table-1) that each higher levels of salinity of water and phosphorus doses reduced significantly Zn content(%) in grain of rice. The Zn content (%) varied from 19.217 to 33.139 ppm respect to salinity in 1st & 2^d crop season. The date revels that application of Zinc sulphate Markedly affected Zinc content (%) in grain of rice. The Zn₂ and Zn₃ levels of Zinc enhanced significantly Zn content (%) in grain of rice over Zn₁ and Zn₀ during both year of study. The Zn₂ level of Zinc proved more beneficial with respect to Zinc content of rice.

Table : Effect of Phosphorus and Zinc on yield and nutrients content (%) of rice crop with water salinity

Treatment	Grain yield (g pot ¹)	Nutrients Content (%)											
		N		P		K		Ca		Na		Zn (ppm)	
		I st	I nd	I st	I nd	I st	I nd	I st	I nd	I st	I nd	I st	I nd
EC levels													
E ₀	8.31	8.58	1.21	1.26	0.20	0.20	0.60	0.60	0.33	0.31	0.14	0.14	32.95
E ₁	6.21	6.42	1.26	1.25	0.17	0.17	0.53	0.51	0.27	0.27	0.21	0.22	28.91
E ₂	3.96	4.15	1.34	1.32	0.14	0.14	0.38	0.40	0.23	0.23	0.26	0.24	19.21
C.D. at 5%	0.0635	0.1433	0.0135	0.0143	0.0030	0.0028	0.0251	0.0135	0.0091	0.0088	0.0063	0.0107	0.5622
Phosphorus Levels													
P ₁	5.23	5.41	1.23	1.21	6.16	0.16	0.47	0.47	0.24	0.23	0.24	0.23	28.95
P ₂	6.23	6.98	1.27	1.25	0.17	0.18	0.51	0.51	0.28	0.27	0.20	0.19	27.07
P ₃	6.18	6.95	1.31	1.30	0.18	0.18	0.53	0.53	0.31	0.31	0.17	0.18	25.05
C.D. at 5%	0.0635	0.1433	0.0135	0.0143	0.0030	0.0028	0.0251	0.0135	0.0091	0.0088	0.0063	0.0107	0.5622
Zinc Levels													
Zn ₀	4.86	5.10	1.25	1.33	0.18	0.18	0.48	0.49	0.25	0.25	0.23	0.21	25.34
Zn ₁	5.96	6.16	1.27	1.26	0.17	0.17	0.50	0.49	0.27	0.26	0.21	0.21	26.74
Zn ₂	7.11	7.31	1.29	1.27	0.17	0.17	0.51	0.51	0.28	0.28	0.19	0.19	28.23
Zn ₃	6.72	6.96	1.27	1.28	0.16	0.16	0.52	0.52	0.29	0.30	0.19	0.18	28.93
C. Dat 5%	0.0733	0.1655	0.0156	0.0165	0.0035	0.0033	N.S	0.0156	0.0106	0.0102	0.0124	0.0124	0.06491
													1.4235

REFERENCES

Jat, J.R. and Mehra, R.K. (2007) Effect of Sulphur and Zinc on yield, Macronutrient content in and uptake by Mustard on haplutepts. *Jurnal of the Indian Society of soil Sciece* **55**, 190-95.

Khandewal, R.B. Singh Baldev and Singh Banani (1990) effect of quality irrigation water on soil properties yield and Nutrient composition of different gram genotypes. *J. Indian soc. Soil Sci.* **38** (2); 358.60.

Kumar, V. and Verma, M (1999) Effect of phosphorus and sulphur application on yield, their content and uptake in wheat. *Ann Pl. Soils res.* **1**:77-72.

Kumar, D. Chauhan, R.P.S. Singh, B.B. and Singh Pal. V. (1999) Response of rice (*oryzasativa*) to Zinc sulphate Incubated and blended with organic Materials in sodic soil. *Indian. J. Agric. Sci.* **69** (6) 402-05.

Lal; M. Chippa, B.R., Khangral, S.S., Singh, J. and Sharma, M (1999) Effect of water varying in Ca/B ratio, salinity and Adj., SAR on yield and composition of Barley, *Ann. Pl. Soil Res.* **1**: 1-5.

Pal, B. and Tripathi, B.R. (1978) Quality of irrigation water and its effect on soil characteristic in semi-desert tract of Uttar Pradesh. A potential hazards of boron in irrigation water. *Indian J. Agron.* 192-95.

Sharma, Y.K. and Pal, B. (2001) Effect of Nitrogen and Zinc application and bromated Salini-Sodic water on the herb yield, ail content and Nutrient composition of Palmaovosa. (*Cymbopogon Martine*) *Indian J. Agric. Sci.* **71** (2): 102-105.

Swarup, Anand and Yaduvanshi, N.P.S. (2000) Effect of integrated Nutrient Management of soil properties and yield of rice in Alkali soils *J. Indian Soc. Sci.* **48** (2): 279-282.

Tripathi, B.R. and Pal, B. (1980) The quality of irrigation water and its effects on soil characteristics and on the performance of wheat *Int. Symp. Salt Affected soils, Karnal*, 376-81.

