

ANTIBACTERIAL ACTIVITY OF *HELICTERES ISORA* FRACTIONS

Veena Sharma* and Urmila Chaudhary

Department of Bioscience and Biotechnology, Banasthali University,
Banasthali- 304022 Rajasthan, India
Email: drvshs@gmail.com

Received-08.07.2016, Revised-26.07.2016

Abstract: The aim of the present study was to evaluate the antibacterial activity of *Helicteres isora* extracts. We have tested different concentrations of three Ethanol, aqueous and hydroethanol fractions of *H. isora* root on selected pathogenic gram positive (*Staphylococcus aureus*, *Bacillus subtilis*, *Enterococcus faecalis* and *Bacillus cereus*) and gram negative bacteria (*Pseudomonas aerogenosa*, *Proteus mirabilis*, *Salmonella typhie*, *Klebsiella pneumonia*, *Proteus vulgaris* and *Escherichia coli*) with the well diffusion method in agar. All the three extracts exhibited antibacterial activity against seven strains of pathogenic bacteria. Hydroethanol extract showed best antibacterial activity as compared to both other extracts. Ethanol extract showed good antibacterial activity against *K. pneumonia* in comparison to other extracts. However aqueous extract showed minimum antibacterial activity against all the pathogens. This finding showed the good antimicrobial activity of *H. isora*, so it forms the basis for further antibacterial drug isolation from this medicinal plant.

Keywords: *Helicteres isora*, Antibacterial, Hydroethanol, Medicinal plant

INTRODUCTION

In the current scenario, infectious diseases due to the various pathogenic micro organisms are still one of the leading reasons behind the death in the world. Various conventional antibiotic drugs are available for the treatment of infectious diseases, but microbes evolve in the changes of genetic structure and metabolism to acquire resistance against antibiotic drugs (Fred, 2006; Raghunath, 2008). *S. aureus*, *P. aeruginosa*, *Streptococcus* sps. and *Enterobacteriaceae* add *E. coli*, *enterococcus* etc. are key microbes that showed antibiotic resistant (Bax *et al.*, 2000; Bhavnani and Ballow, 2000). These drug resistant microbes are more pathogenic with high mortality rate and become a great challenge in pharmaceutical and healthcare. These commercially available synthetic drugs also have various side effects, carcinogenicity, high cost and have various environmental problems (Gortzi *et al.*, 2006), so to overcome all these problems, researcher looking for the invention of alternative and novel drug from natural sources like plants, algae etc.

Helicteres isora (family- Sterculiaceae) commonly known as “Marorphali” in Hindi and “East India Screw Tree” in English is a medium sized tree, abundantly found in hills and forests, well known for its use in traditional medicinal values (Sabale *et al.*, 2012). *H. isora* showed antidiabetic (Chakrabarti *et al.*, 2002), hypolipidaemic (Kumar and Murugesan, 2008), anti-oxidant (Basniwal *et al.*, 2009), anti-nociceptive (Venkatesh *et al.*, 2007a), hepatoprotective (Dhevi *et al.*, 2008) and cardiotonic (Dama *et al.*, 2011) activities. Root juice of *H. isora* was showed to be useful in fever, cough, asthma, stomach infections, intestinal infections (Kirtikar and Basu, 1991) and was also useful for cuts and wounds healing (Nagaraju and Rao, 1990) and scabies. From

the roots, betulinic acid, daucosterol, sitosterol, isorin (Qu *et al.*, 1991), cucurbitacin B and isocucurbitacin B were isolated (Bean *et al.*, 1985). Despite the extensive work on *H. isora*, this plant has not been studied for antibacterial potential. Hence keeping this perspective and the above mentioned medicinal properties of *Helicteres isora*, there is a considerable need to investigate the protective and therapeutic effects of this plant against the ten pathogenic bacteria.

MATERIAL AND METHOD

Bacterial strains and growth conditions

Four gram positive bacterial strain *Staphylococcus aureus* (MTCC 87), *Bacillus subtilis* (MTCC 441), *Enterococcus faecalis* (MTCC 9845) and *Bacillus cereus* (MTCC 1306) and six gram negative bacterial strains *Pseudomonas aeruginosa* (MTCC 1934), *Proteus mirabilis* (MTCC 425), *Salmonella typhimurium* (MTCC 3224), *Klebsiella pneumonia* (MTCC 3384), *Proteus vulgaris* (MTCC 426) and *Escherichia coli* (MTCC 1695) were procured from Microbial Type Culture Collection (IMTECH), Chandigarh, India. Nitrogen broth medium was used for the maintenance of all bacterial strains at 4 °C after the preparing mother culture at 37 °C in rotator incubator for 24 hrs.

Plant extracts preparation

Plant sample (Roots of *Helicteres isora*) was collected from Shiwalik range of Uttar Pradesh and were washed, shade dried and subjected to coarse powder using electric grinder. The powder was extracted with different solvent ranging from non polar to polar (petroleum ether, benzene, chloroform, ethyl acetate, ethanol and distilled water) and 70% hydroethanol in Soxhlet. Ethanol, aqueous and

*Corresponding Author

hydroethanol extracts was concentrated using rotary evaporator and stored at 4 °C in airtight containers. Four concentration (10, 12, 15 and 20 mg/ml) of all the three extract (ethanol, aqueous and hydroethanol) were prepared for further activity.

Well diffusion method: (Perez et al. 1990)

Nutrient agar medium was prepared, sterilized (121 °C for 15 min.), poured into a pre sterilized Petri plates and allowed to solidify at room temp. in laminar air flow. Bacterial culture of bacteria (0.3 ml) was placed on the nutrient agar and spread with the help of glass spreader. Four wells (4 mm diameter) were punched on each agar plate using a sterile cork borer. In each well 20 µl of the sample was added and incubated at 37 °C for 18 to 24 hrs in inverted position in incubator. Zone of inhibition (mm) was observed. Streptomycin (10 mcg/ disc) and tetracycline (30 mcg/ disc) were used as a positive control.

RESULT

Antibacterial potential of three different fraction of *H. isora* with 4 concentrations (10, 12, 15 and 20 mg/well) were determined against 10 pathogenic

bacteria with the help of well diffusion method and summarized in table 1 and figure 1. All the three extract showed antibacterial activity, the response for each bacterium tested was different. Diameter of inhibition was ranging from 6.3 to 22 mm indicating that *Bacillus subtilis* was most susceptible bacteria while *E. ficalis*, *S. aureus* and *P. aerogenosa* were resistant bacteria, and there growth was not inhibited by all the three extracts. Almost all bacteria showed resistant against the aqueous extract except *E. coli* and *B. cereus*. Hence aqueous extract showed antibacterial activity against only *E. coli*. *Bacillus subtilis* showed more sensitivity against hydroethanolic extract in comparison to other extract as well as stranded antibiotic. Most prominent antibacterial activity of all the three extract were observed at 20 mg/well concentration in comparison to all other concentrations (10, 12 and 15 mg/ well). Hydroethanol extract showed prominent antibacterial activity against pathogenic bacteria in comparison to other extracts.

Table 1. Means of inhibition growth diameter obtained by using different concentrations of three extracts of *H. isora* roots.

Bacteria	Sample concentration	Hydroethanol	Ethanol	Aqueous	Positive control
<i>K. pneumonia</i>	10	6.3±1.2	11.3±0.6	ND	26
	12	8.0±1.0	12.0±1.0	ND	
	15	10.3±2.1	11.7±2.1	ND	
	20	13.7±1.5	17.3±1.5	ND	
<i>B. subtilis</i>	10	11.7±0.6	ND	ND	21
	12	13.7±1.5	ND	ND	
	15	14.3±1.2	7.7±0.6	ND	
	20	22±0.4	8.7±0.6	ND	
<i>S. typhi</i>	10	9.7±0.6	ND	ND	22
	12	10.3±0.6	ND	ND	
	15	12.0±1.0	11.0±1.0	ND	
	20	20.0±1.0	11.7±1.5	ND	
<i>P. vulgaris</i>	10	11.7±2.5	11.7±0.6	ND	23
	12	12.0±2.0	13.3±2.5	ND	
	15	10.3±0.6	12.0±2.0	ND	
	20	15.0±2.0	11.0±2.6	ND	
<i>E. coli</i>	10	12.0±1.0	15.0±0.00	7.3±0.6	33
	12	13.0±1.0	15.0±0.00	8.±0.00	
	15	14.0±1.0	15.7±0.6	9.±0.00	
	20	16.0±1.0	17.7±1.5	11.7±0.6	
<i>p. mirabilis</i>	10	7.7±0.6	8.0±1.0	ND	17

	12	10.0±0.00	10.3±0.6	ND	
	15	11.7±1.5	10.7±0.6	ND	
	20	14.3±0.6	13.0±1.0	ND	
<i>B. cereus</i>	10	13.0±1.0	13.0±1.0	ND	24
	12	14.3±0.6	14.3±1.2	8.7±1.5	
	15	15.3±0.6	14.7±1.2	10.0±0.00	
	20	18.3±2.1	18.0±1.0	11.0±1.0	

Positive control- streptomycin for all except *E. coli* (Tetracycline). ND not determined

DISCUSSION

Antibiotics are synthetic drugs which are used against the treatment of various pathogenic micro-organisms. These antibiotics also possess many side effects and high costs. In the present era researchers have immense interest in the search for new antimicrobial drug from herbal plant origin. The result of the current study showed that ethanolic and hydroethanolic extract possess antibacterial activity against all pathogenic bacteria except *E. faecalis*, *S. aureus* and *P. aerogenosa*. Aqueous extract showed antibacterial activity against only *E. coli* and *B. cereus*. Varghese *et al.* (2012) reported that methanol extract and there isolated constituents (alkaloids, flavonoids and phenolic compounds) of *H. isora* fruits possess antimicrobial activity against *E. coli*, *P. aeruginosa*, *Salmonella abony* and *S. aureus*. Aqueous, ethanol, acetone and methanol extract of *H. isora* fruits also showed antibacterial potential against *S. typhimurium*, *E. coli*, *Staphylococcus epidermidis*, *P. vulgaris*, *Enterobacter aerogenes*, *S. aureus* and least antibacterial potential against *P. aerogenosa*. (Tambekar *et al.*, 2008) *H. isora* fruits aqueous extract also reported antimicrobial potential against ten pathogen strains -*E. coli*, *S. aureus*, *E. aerogenes*, *P. aeruginosa*, *S. typhi*, *S. typhimurium*, *S. paratyphi*, *P. vulgaris*, *K. pneumoniae* and *Shigella Flexneri*. (Tambekar and khante, 2010). Acetone extract of *H. isora* fruit possess antibacterial activity against *E. coli*, *B. cereus* and *E. faecalis* (Shriram *et al.*, 2010) while methanol and aqueous extract of *H. isora* leaf reported antimicrobial activity against *E. coli* and *A. niger* (Kumar *et al.*, 2013) According to the present study, hydroethanol extract showed prominent antibacterial efficacy against pathogenic bacteria in comparison to other extracts (aqueous and ethanol), because hydroethanolic extract possess more secondary metabolite and other compounds in comparison to others, reason behind this is ethanol and aqueous extract were prepared with sequential method (non polar to polar) but hydroethanolic extract was prepared with direct method. So all the beneficiary compounds were distributed in various fractions like petroleum ether, benzene, chloroform, ethyl acetate, ethanol and aqueous. The antimicrobial efficacy of plant is due to the presence of tannins, phenolic compounds, saponins and

flavonoids (Abooba and Efuwape, 2001), because tannins have been reported to prevent the microorganisms development by precipitating protein of microbes and convert it into unavailable form for microbes (Chung *et al.*, 1998 and Phate *et al.*, 2011), while flavonoids are able to form complexes with extracellular soluble proteins and bacterial cell wall (Tsuchiya *et al.* 1996; Cushine and Lamb 2005), so flavonoids possess efficacy against gram positive and gram negative bacteria, viruses and fungi (Afolayan *et al.*, 1997). So, *H. isora* showed antibacterial activity against pathogenic bacteria because it possess various antibacterial compounds like phenols, flavonoids, tannins, saponins and other active components (Sharma *et al.*, 2016). Various modes of action are involved in the antibacterial activity of various extracts. Because different extracts of different plant or same plant have variability and different chemical profile, so their antibacterial activity is not due to single mechanism. It is believed that these active compounds have different sites of action at the cellular level. There are 6 possible mechanisms of antimicrobial action that includes- interactions with membrane proteins; coagulation of cell content; inhibition of enzyme synthesis; disintegration of cell membrane; disturbance of the outer membrane of gram negative bacteria and release of lipopolysaccharides and destabilizing of the proton motive force with leakage of ions. (Bakkali *et al.*, 2008; Burt 2004; Di Pasqua *et al.*, 2007; Hammer *et al.*, 2008; Amensour *et al.*, 2010). All the extracts of *H. isora* roots showed antibacterial activity against both gram negative and gram positive bacteria. The positive results against both gram positive and negative bacteria may indicate the presence of broad spectrum antibiotic components in the plant (Vaghasiya and Chanda, 2007).

CONCLUSION

From the result it was obvious that plant extract have different modes of action and exhibited stronger antibacterial activity against both gram positive and negative bacterial strains. The best antibacterial activity was observed against *Bacillus sutilis*. *H. isora* root seems to a promising natural antibacterial agent that have potential applications for controlling the pathogenic bacteria and have potential

applications in pharmaceutical industry should replace the synthetic ones.

REFERENCES

Aboaba, O. and Efuwape, B.M. (2001). Antibacterial Properties of Some Nigerian Species. Biochemical and Biophysical Research Communications, 13:183-188.

Afolayan, A.J. and Meyer, J.J.M. (1997). The antimicrobial activity of 3, 5, 7- trihydroxyflavone isolate from the shoot of *Helichrysum aureonites*. Journal of Ethnopharmacology, 57:177-181.

Amensour, M.; Bouhdid, S.; Fernandez-Lopez, J.; Idaomar, M.; Senhaji, NS. and Abrini, J. (2010). Antibacterial activity of extracts of *Myrtus communis* against food-borne pathogenic and spoilage bacteria. International Journal of Food Properties, 13:1215-1224.

Bakkali, F.; Averbeck, S.; Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils- a review. Food and Chemical Toxicology, 46:446-475.

Basniwal, P.K.; Suthar, M.; Rathore, G.S.; Gupta, R.; Kumar, V.; Pareek, A. and Jain, D. (2009). *In vitro* Antioxidant Activity of Hot Aqueous Extract of *Helicteres isora* Linn. Fruits. Natural Product Radiance, 8(5):483-487.

Bax, R.; Mullan, N. and Verhoef, F. (2000). The millennium bugs- the need for and development of new antibacterials. International Journal of Antimicrobial Agents, 16:51-59.

Bean, M.F.; Antoun, M.; Abramson, D.; Chang, C.J.; Mc Laughlin, J.L. and Cassady, J.M. (1985). Cucurbitacin B and Isocucurbitacin B Cytotoxic Compound of *Helicteres isora*. Journal of Natural Product, 48(3):500-503.

Bhavnani, S.M. and Ballow, C.H. (2000). New agents for Gram-positive bacteria. Current Opinion in Microbiology, 3:528-534.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods- a review. International Journal of Food Microbiology, 94:223-253.

Chakrabarti, R.; Reeba, K.; Vikramadithya, R.M.; Sharma, V.M.; Jagadhesan, N.; Rao, Y.N.; Sairam, P. and Rajagopalan, R. Antidiabetic and Hypolipidemic Activity of *Helicteres isora* in Animal Models. Journal of Ethnopharmacology, 81:343-349.

Chaudhary, U.; Sharma, V. and Sharma, S. (2016). Quantitative and *In vitro* antioxidant potential of various fractions of *Helicteres isora* roots. World Journal of Pharmaceutical Science, 5(3):1360-1374.

Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W. and Lin, Y. (1998). Tannins and human health: A review. Critical Reviews in Food Science and Nutrition, 38(6):421-464.

Cushine, T.P. and Lamb, A.J. (2005). Detection of galangin-induced cytoplasmic membrane damage in *Staphylococcus aureus* by measuring potassium loss. International Journal of Antimicrobial Agents, 26:343-356.

Dama, G.Y.; Taare, H.L.; Gore, M.S.; Shende, V.S.; Deore, S.R.; Khandagale, S.T. and Kandekar, A.E. (2011). Comparative Cardiotonic Activity of *Helicteres isora* with Digoxin on Isolated Frog Heart. International Journal of Preclinical Research, 2(2):81-86.

Dhevi, R.; Gayathri, K.; Mohamed, M.S.; Subashini, U.; Dubey, G.P.; Victor, G.R. and Chitra, M. (2008). A Preliminary Biochemical Screening of *Helicteres isora* L. Stem bark in Carbon Tetrachloride Induced Toxicity in Rats. Bulgarian Journal of Veterinary Medicine, 11(4):235-242.

Fred, C.T. (2006). Mechanisms of antimicrobial resistance in bacteria, The American Journal of Medicine, 119:S3-S10.

Gortzi, O.; Lalas, S.; Chinou, I. and Tsaknis, J. (2006). Reevaluation of antimicrobial and antioxidant activity of *Thymus* spp. extracts before and after encapsulation in liposomes. Journal of Food Protection, 69:2998-3000.

Hammer, K.A.; Carson, C.F.; Dunstan, J.A.; Hale, J.; Lehmann, H.; Robinson, C.J.; Prescott, S.L. and Riley, T.V. (2008). Antimicrobial and anti-inflammatory activity of five *Taxandria fragrans* oils *in vitro*. Microbiology and Immunology, 52:522-530.

Kirtikar, K.R. and Basu, B.D. (1991). Indian Medicinal Plants. 2nd ed. Allahabad: Bishan Singh Mahendra Pal Singh, pp. 371-372.

Kumar, G. and Murugesan, AG. (2008). Hypolipidemic Activity of *Helicteres isora* L. Bark Extracts in Streptozocin Induced Diabetic Rats. Journal of Pharmacology, 116:161-166.

Kumar, S.; Jena, P.K.; Kumari, M.; Patnaik, N.; Nayak, A.K. and Tripathy, P.K. (2013). Validation of tribal claims through pharmacological studies of *Helicteres isora* L. leaf extracts: an Empirical Research. International Journal of Drug Development and Research, 5 (1): 279-285.

Nagaraju, N. and Rao, K.N. (1990). A Survey of Plant Crude Drugs of Rayalaseema, Andhra Pradesh, India. Journal of Ethnopharmacology, 29:137-158.

Pasqua, D.R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D. and Mauriello, G. (2007). Membrane toxicity of antimicrobial compounds from essential oils. Journal of Agricultural Food and Chemistry, 55(12):4863-4870.

Perez, C.; Pauli, M. and Bazerque, P. (1990). An antibacterial assay by agar well diffusion method. Acta Biologica Et Medica Express, 15:113-115.

Phate, A. R.; Sandesh, R.; Wayal, and Oswal, R.J. (2011). Study of antimicrobial activity on *Citrullus colocynthis*. Imperial Journal of Pharmacognosy and Natural Products, 1(1):14-18.

Qu, W.H.; Li, J.G. and Wang, M.S. (1991). Chemical Studies on the *Helicteres isora*. *Zhongguo Yaoke Daxue Xuebao*, 22(4):203-206.

Raghunath D. (2008). Emerging antibiotic resistance in bacteria with special reference to India. *Jornal of Bioscience*, 33:593-603.

Sabale, P.M.; Grampurohit, N.D.; Banerjee, S.K.; Gaikwad, D.D. and Gadhave, M.V. (2012). Recent Advances on the Phytochemical and Pharmacological Profile of Plant *Helicteres isora* Linn. *International Research Journal of Pharmacy*, 3(4):14-17.

Shriram, V.; Jahagirdar, S.; Latha, C.; Kumar, V.; Dhakephalkar, P.; Rojatkar, S. and Shitole, M.G. (2010). Antibacterial and antiplasmid activities of *H. isora* L. *Indian Journal of Medical Research*, 132:94-99.

Tambekar, D.H. and Khante, B.S. (2010). Antibacterial properties of traditionally used medicinal plants for enteric infections by Adivasi's (bhumka) in melghat forest (Amravati district). *International Journal of Pharmaceutical Sciences and Research*, 1(9):120-128.

Tambekar, D.H.; Khante, B.S.; Panzade, B.K.; Dahikar, S.B. and Banginwar, Y.S. (2008) Evaluation of phytochemical and antibacterial potential of *Helicteres isora*. fruits against enteric bacterial pathogens. *African Journal of Traditional, Complementary and Alternative Medicines*, 5(3): 290-293.

Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T. and Iinuma, M. (1996). Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant *Staphylococcus aureus*. *Journal of Ethnopharmacology*, 50:27-34.

Vaghasiya, Y. and Chanda, V.S. (2007). Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. *Turkish Journal of Biology*, 31:243-248.

Varghese, Elsa, Pappachen, K.L. and Narayanan, S.S. (2012). Isolation and Evaluation of Antimicrobial Properties of Isolated Phytoconstituents of Fruits of *Helicteres isora* Linn. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 3;(3):959-964.

Venkatesh, S.; Sailaxmi, K.; Reddy, B.M. and Ramesh, M. (2007). Antinoceptic Activity of *Helicteres isora*. *Filoterapia*, 78:146-148.

