

OPTIMISATION OF *THALASSIOSIRA WEISSFLOGII* CULTURE REGIMES WITH REFERENCE TO NITROGEN INPUTS

*A. Pathak, **E. Danish and *A. Srivastava

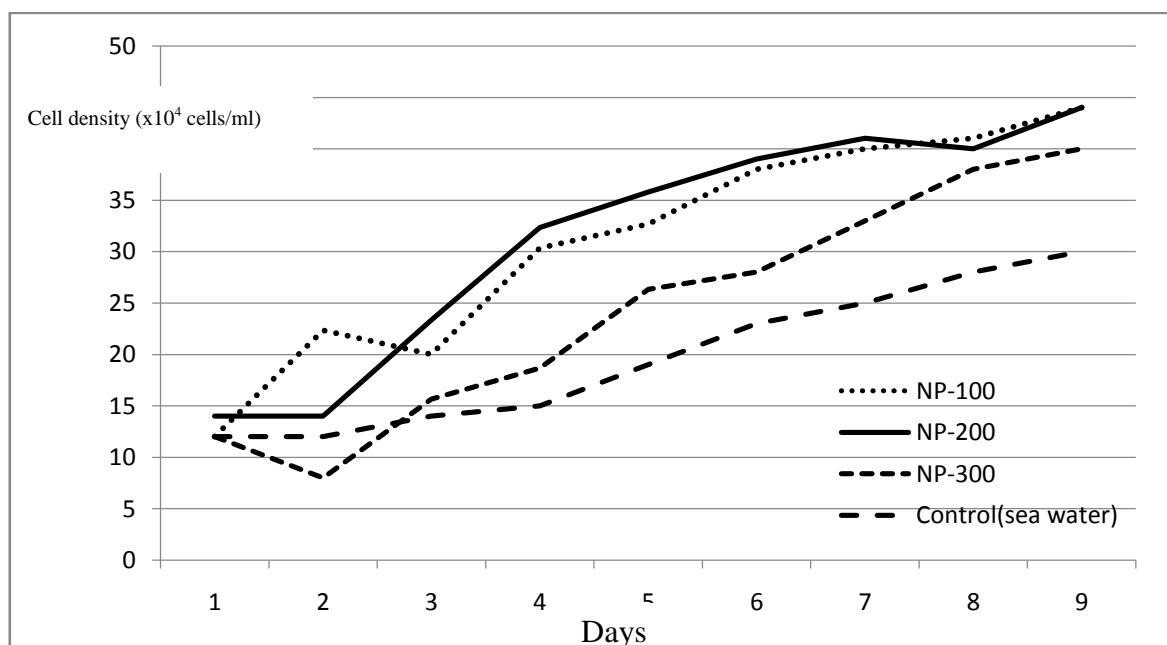
Amity Institute of Marine Science and Technology
Amity University Uttar Pradesh, Sector 125, Noida – 201 303,
Uttar Pradesh, India.
Email: amanpathak.work@gmail.com

Received-03.04.2016, Revised-20.04.2016

Abstract: This work deals with the response of *Thalassiosira* to the influence of low nitrate and high availability and understanding the results from a quantitative viewpoint. Cell stress responses to nitrogen limitation were observed. The culture kept at lower temp absorb more nutrients and the cell size appeared large than the regular cells. High nitrogen induction was inhibitory in growth performance that 100 and 200 ppm N showed fairly better cell growth responses.

Keywords: Nitrogen, Cell, Phosphorus, Macronutrients

INTRODUCTION


Live feed continues to be the principal nutritional basis for culture of larvae (Richmond, 2004). Shrimp prefer diatoms than other microalgae (Ju, Forster & Dominy 2009). *Thalassiosira* got into the limelight with the Vannamei farming bloom in India. For Indian conditions and seawaters, the metal profile and bacterial complexes determine the size, shape and biochemical content of the strain in particular. The culture of Vannamei introduced in Indian waters needs elaborate studies for standardisation and refinement of nutrient amounts and applications. The objective of this study is to culture *Thalassiosira* and observe the cell count with varying nitrogen concentrations.

MATERIAL AND METHOD

The *Thalassiosira* culture was cultured with three different nitrogen concentrations – 300 ppm, 200 ppm and 100 ppm but the rest of the nutrients remaining the same as f2 media. The experiments were conducted with 10 ml test tubes. Culture conditions were 18 degrees temperature and 30-32 ppt salinity.

RESULT

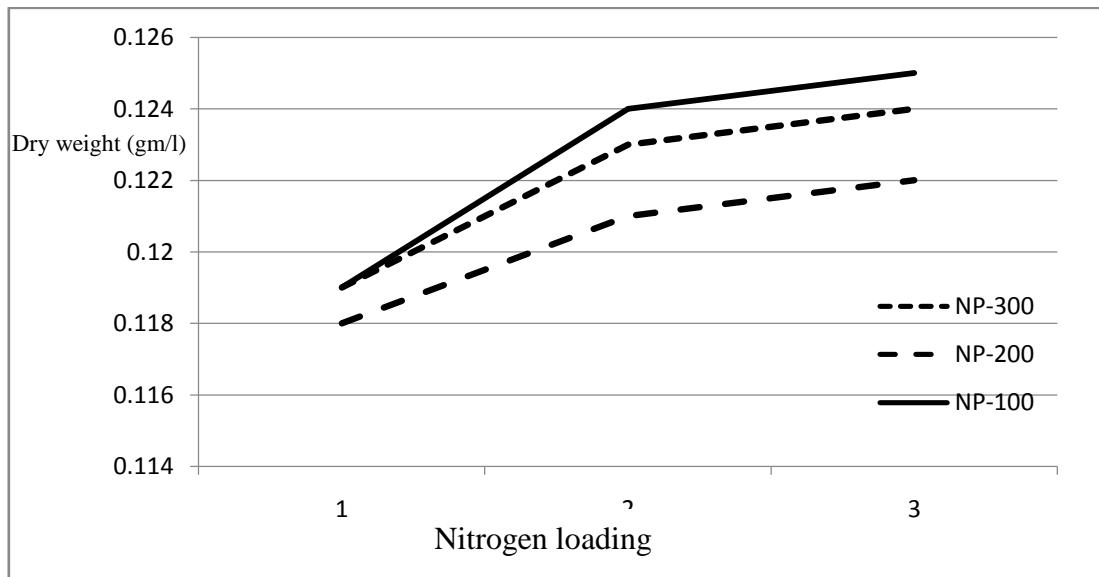

Nitrogen variability effects on *Thalassiosira* cell numbers and dry cell weight

Fig. 1. Cell density ($\times 10^4$ cells/ml) of *Thalassiosira* in response to varying nitrogen concentrations with time (days)

*Corresponding Author

Fig.1. Shows that Nitrogen concentration at 100 ppm and 200 ppm reached the same cell density within the same residence time. 300 ppm was inhibitory on *Thalassiosira*. However, a progressive rise was visible for 100 ppm rather than 200 ppm levels.

Fig. 2. Dry weight (gms per litre) of *Thalassiosira* in response to Nitrogen loading

Regarding the dry weight of *Thalassiosira* cell, 100 ppm nitrogen concentration registered better cellular protoplast and biomass than rest of the treatments as seen in Fig. 2.

DISCUSSION

Macronutrients such as nitrogen and phosphorus are believed to limit phytoplankton production in many marine and freshwater communities; consequently the uptake kinetics of these nutrients have long been of interest to physiologists and ecologists (McCarthy, 1981; Cembellaa et al., 1984).

Diatom blooms commonly occur in regions where nitrogen (N) source is variable and they possess a suite of N-related transporters and enzymes (Allen 2005; Armbrust et al., 2004; Hildebrand, 2005; Hildebrand and Dahlin, 2000) and utilize a variety of inorganic (e.g., nitrate, NO_3^- ; ammonium, NH_4^+) and organic (e.g., urea; amino acids) N sources for growth. Diatoms exhibit their fastest growth rates on reduced forms of N such as NH_4^+ or urea (Dortch, 1990; Dortch et al., 1991; Peers et al., 2000; Syrett 1981), in part due to the low energetic costs associated with assimilation of these forms (Hildebrand, 2005).

When cells experience high daily irradiance, N is partitioned between the plastid during the day and the mitochondria at night with variations based on a particular N source (Bender et al., 2012). The impact of N source on differential transcript accumulation was most apparent under the highest light intensity in *Thalassiosira pseudonana* (Bender et al., 2012). The present study clearly indicates insufficient studies on nitrogen effects on *Thalassiosira* from the dearth of

related literature. Silicate approves to be a key factor for growth acceleration and cell multiplication. Conclusions drawn from the study are – 100 ppm nitrogen concentration are sufficient for *Thalassiosira* growth and multiplication and dry matter per cell accrual under controlled conditions.

REFERENCES

Allen, A.E. (2005). Beyond sequence homology: Redundant ammonium transporters in a marine diatom are not functionally equivalent. *J Phycol.*, 41:4-6.

Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; Brzezinski, M.; Chaal, B.; Chiovitti, A.; Davis, A.; Demarest, M.; Detter, J.C.; Glavina, T.; Goodstein, D.; Hadi, M.Z.; Hellsten, U.; Hildebrand, M.; Jenkins, B.D.; Jurka, J.; Kapitonov, V.; Kröger, N.; Lau, W.; Lane, T.W.; Larimer, F.; Lippmeier, J.C.; Lucas, S.; Medina, M.; Montsant, A.; Obornik, M.; Parker, M.S.; Palenik, B.; Pazour, G.J.; Richardson, P.; Rynearson, T.A.; Saito, M.A.; Schwartz, D.; Thamdrup, K.; Valentin, K.; Vardi, A.; Wilkerson, F. and Rokhsar, D.S. (2004). The genome of the diatom *Thalassiosira pseudonana*: Ecology, evolution, and metabolism. *Science*, 306:79-86.

Bender, S.J.; Parker, M.S. and Armbrust, E.V. (2012). Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom, *Thalassiosira pseudonana*. *Protist*, 163: 232-251.

Berges, J.A. and Harnson, P.J. (1995) Relationships between nitrate reductase activity and rates of growth and nitrate incorporation under steady-state light or nitrate limitation in the marine diatom *Thalassiosira pseudonana* (Bacillariophyceae). *J Phyco.*, 131: 85-95.

Cembella, A.D.; Antia, N.J. and Harrison, P.J. (1984). The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 1. *Cleveland Rubber Co. crit. Rev. Microbial*, 10: 317-391.

Dortch, Q. (1990). The interaction between ammonium and nitrate uptake in phytoplankton. *Mar EcolProg Ser.*, 61:183-201.

Dortch, Q.; Thompson, P.A. and Harrison, P.J. (1991). Short-term interaction between nitrate and ammonium uptake in *Thalassiosira pseudonana*: Effect of preconditioning, nitrogen source and growth rate. *Mar Biol.*, 110:183-193.

Hildebrand, M. (2005). Cloning and functional characterization of ammonium transporters from the marine diatom *Cylindrotheca fusiformis* (Bacillariophyceae). *J Phycol.*, 41:105-113.

Hildebrand, M. and Dahlin, K. (2000). Nitrate transporter genes from the diatom *Cylindrotheca fusiformis* (Bacillariophyceae): mRNA levels controlled by nitrogen source and by the cell cycle. *J Phycol.*, 36:702-713.

Ishida, Y.; Hiragushi, N.; Kitaguchi, H.; Mitsutani, A.; Nagai, S. and Yoshimura, M. (2000). A highly CO₂ -tolerant diatom, *Thalassiosira weissflogii* H1, enriched from coastal sea and its fatty acid composition. *Fish. Sci.*, 66 (4): 655-659.

Ju, Z.Y.; Forster, I.P. and Dominy, W.G. (2009). Effects of supplementing two species of marine algae or their fractions to a formulated diet on growth, survival and composition of shrimp (*Litopenaeus vannamei*). *Aquaculture*, 292: 237-243.

Latasa, M. (1995). Pigment composition of *Heterocapsa* sp. and *Thalassiosira weissflogii* growing in batch cultures under different irradiances. *Sci. Mar.*, 59 (1): 25-37.

Martins, T.G.; Odebrecht, C.; Jensen, L.V.; D'Oca, M.G.M. and Wasielesky Jr. W. (2014). The contribution of diatoms to bioflocs lipid content and the performance of juvenile *Litopenaeus vannamei* (Boone, 1931) in a BFT culture system. *Aquaculture Research*, 1-12.

McCarthy, J.J. (1981). The kinetics of nutrient utilization. *Can Bull. Fish. Aquat. Sci.*, 210: 211-233.

Moss, S.M.; Forster, I.P. and Tacon, A.G.J. (2006). Sparing effects of pond water on vitamins in shrimp diets. *Aquaculture*, 258: 388-395.

Parlow, J.S.; Harrison, P.J. and Thompson, P.A. (1984). Development of rapid ammonium uptake during starvation of batch and chemostat cultures of a marine diatom *Thalassiosira pseudonana*. *Mar. Biol.* 83: 43-50.

Passow, U. (2002). Production of transparent exo polymer particles (TEP) by phyto- and bacterioplankton. *Marine Ecology Progress Series*, 236: 1-12.

Peers, G.S., Milligan, A.J. and Harrison, P.J. (2000). Assay optimization and regulation of urease activity in two marine diatoms. *J Phycol.*, 36:523-528.

Qin, J.G.; D'Antignan, V.; Zhang, W. and Franco, C. (2013). Discovery of antimicrobial activities of a marine diatom, *Thalassiosira rotula*, *African Journal of Microbiology Research*, 7 (50): 5687-5696.

Richmond, A. (2004). *Handbook of Microalgal Culture: Biotechnology and applied phycology*. Edit. Blackwell Publishing, USA, pp: 566.

Sanchez, D.R.; Fox, J.M.; Gatlin, D. and Lawrence, A.L. (2012). Dietary effect of fish oil and soybean lecithin on growth and survival of juvenile *Litopenaeus vannamei* in the presence or absence of phytoplankton in an indoor system. *Aquaculture Research*, 45(8), 1367-1379.

Syrett, P. (1981). Nitrogen metabolism of microalgae. *Aquat Sci.*, 210:182-210.

Storseth, T.R.; Hansen, K.; Reitan, K.I. and Skjermo, J. (2005). Structural characterization of β -D-(1 \rightarrow 3)-glucans from different growth phases of the marine diatoms, *Chaetoceros mulleri* and *Thalassiosira weissflogii*. *Carbohydrate Research*, 340: 1159-1164.

Urbani, R.; Magaletti, E.; Sist, P. and Cicero, A.M. (2005). Extracellular Carbohydrates released by the marine diatom *Cylindrothecaclosterium*, *Thalassiosira pseudonana* and *Skeletonema costatum*: Effect of P-depletion and growth status. *Science of the Total Environment*, 353: 300-306.

Viso, A.C.; Pesando, D. and Baby, C. (1987). Antibacterial and antifungal properties of some marine diatoms in culture. *Bot. Mar.*, 30:41-45.

