

EFFECT OF THrips POPULATION ON MANAGEMENT OF BUD NECROSIS VIRUS INFECTING TOMATO *LYCOPERSICON ESCULTENTUM* MILL IN ANDHRA PRADESH

Ch. Ruth* and M. Ramaiah

Horticultural College & Research Institute, Anantharajupeta, Dr. YSR Horticultural University; Venkataramanna gudem; Andhra Pradesh, India

Received-06.04.2016, Revised-23.05.2016

Abstract: The closer the spacing resulted the lower was the thrips incidence. The thrips population was increased from 30 DAP to 50 DAP and then declined from 60 DAP. The thrips population was lowest in early planted crop and highest in late planted crop and medium in normal planted crop in *kharif* and *Rabi* seasons. The thrips population was highest in *kharif* followed by *Rabi* season. The thrips populations has a significant relationship with the stage of the crop.

Keywords: Bud necrosis virus, Tomato, Thrips population, Cultural practices

INTRODUCTION

In Andhra Pradesh, tomato is grown very extensively in Chittoor district followed by Kurnool. Major markets for tomato export are located at Madanapalli and Palamaneru in Chittoor district and Aluru, Aspari, Pyapili and Pattikonda in Kurnool district. The most important tospo virus infecting tomato include tomato spotted wilt virus (TSWV) in USA, Spain, Taiwan and Argentina and peanut bud necrosis virus (GBNV) in India. GBNV seems to be endemic in India and its host range indicates that legumes and other hosts play a major role in disease occurrence (Ghanekar *et al.*, 1979; Singh and Krishna Reddy, 1996). Tomato spotted wilt virus (TSWV) was reported to occur as early as 1919 in Australia. Its occurrence in India was first reported by Todd *et al.*, (1975) from Nilgiris. Of several viral diseases attacking tomato bud necrosis disease caused by Groundnut bud necrosis virus (GBNV) transmitted by *Thrips palmi* (karmy) in a propagative manner was considered to be a major threat and caused chlorotic and necrotic symptoms. The management of the disease emphasizes phytosanitary and agronomic measures that limits potentials sources of virus infection, uses chemical control measures against thrips. (Coutts & Jones, 2005). The disease development, thrips population and yield of tomato were influenced by different cropping systems (Ramkat *et al* 2008).

METHODOLOGY

Interaction of time of planting, different spacing levels and different doses of nitrogen fertilizer application as major factors. The most susceptible cultivar Meghana was planted in a plot size of 4.2 x 3.6M and replicated thrice. In 27 combinations are D1: Early planting: June 1 (*kharif*) and September 1 (*rabi*); D2: Normal planting: July 1 (*kharif*) and October 1 (*rabi*); D3: Late planting: August 1 (*kharif*) and November 1 (*rabi*); S1: Closer spacing:

60 x 30cm; S2: Normal spacing: 60 x45cm; S3: Wider spacing: 60 x60cm; N1: Lower dose of N-application: 100kg/ha; N2: Medium dose of N-application: 150kg/ha; N3: Higher dose of N-application: 200kg/ha.

Out of 27 combinations of treatments included in the first phase of experiment, two best combinations were chosen to include in the second phase of experiment along The trail was conducted in two phases during *Kharif* and *Rabi* in a factorial RBD with with barrier crop, seed treatment coupled with spray application. The thrips population was recorded at 30 DAP

RESULT

Phase -I: Kharif, 2009

Thrips population

At 30 DAP, in normal planted July 1st crop, the minimum thrips population 12.48, 14.05, 15.75 in closer spacing with nitrogen levels 100kg/ha, 150kg/ha and 200kg/ha respectively (Table 1). At 30, DAP in late planted August crop the minimum thrips population 15.48, 15.4, 19.3 in close spacing and nitrogen levels 100kg/ha, 150kg/ha and 200kg/ha respectively. Where as it was increased with increase in spacing and nitrogen levels. Evidently the occurrence of thrips population was closely associated with plant density or plant to plants spacing. The lowest thrips population was observed with closer spacing 60x30cm Even at 40 DAP the highest thrips population (18.48) was recorded with wider spacing 60x60cm and high nitrogen dose @200kg/ha in late planted (August) crop. At 50 DAP also, the same result was recorded the lowest thrips population 14.73, was recorded in the closer spacing in early planted (June 1st) crop.

Rabi

Thrips population

At 30 DAP, lowest population of 5.58 thrips was observed at closer spacing 60x30 cm and lower

*Corresponding Author

nitrogen 100 Kg/ha in early planted September 1st crop. Thrips population significantly increased to 12.55 with wider spacing 60x60 cm and high nitrogen content 200 Kg/ha (Table 2).

Over all data revealed that the factors dates of sowing, spacing levels and nitrogen levels had significant influence on the occurrence of thrips population. The closer the spacing resulted the lower was the thrips incidence. The thrips population was increased from 30 DAP to 50 DAP and then declined from 60 DAP. The thrips population was lowest in early planted crop and highest in late planted crop and medium in normal planted crop in *kharif* and *Rabi* seasons. The thrips population was highest in *kharif* followed by *Rabi* season. The observation clearly indicated the thrips populations were having a significant relationship with the stage of the crop. population was low at 30 DAP and increased progressively up to 50 DAP to reach peack levels. When the interaction effect studied the thrips population had significant difference between date of planting, spacing levels and nitrogen levels.

Yield Data

In the *kharif*, maximum yield was recorded in the treatment combination D2S2N2 (29.14 t/ha) i.e. normal data of planting (July 1st) + normal spacing (60X45cm) + normal nitrogen level (150kg/ha) followed by D2S2N1 (28.52 t/ha) i.e. Normal data

of planting (July 1st) + normal spacing (60X45cm) + low level nitrogen (100kg/ha) in *rabi* 2007, maximum yield was recorded in the same combination D2S2N2 (30.54 t/ha). (Table.3)

Phase -II: *Kharif*

Thrips population

At 30 DAP, the lowest thrips population in spray treatment with S₁-seed treatment with imidacloprid @ 5 g/Kg seed and spray with imidacloprid 0.4 ml/L. of water with barrier crop further there was increase in thrips population up to 50 DAP and declined significantly at 60 DAP (Table 4).

Rabi

Thrips population

At 30 DAP lowest population of thrips (1.91) was observed at spray treatment with S₁-seed treatment with imidacloprid @ 5 g/Kg seed and spray with imidacloprid 0.4 ml/L of water with barrier crop further there was increase in thrips population up to 50 DAP and declined significantly at 60 DAP (Table 5)

Yield Data

Highest yields were recorded in C1B1S1 treatment combination during *kharif* 2010 (28.11 t/ha) and in *rabi* (29.05 t/ha) respectively (Table 6).

Table 1. Thrips population counts on tomato phase -1 *kharif* 2009-2010

	D1(30 DAP)			D1 (40 DAP)			D1 (50DAP)			D1 (60DAP)		
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
N1	13.81(2 1.81)	14.41(2 2.30)	14.72(2 2.55)	13.5(25. 70)	12.38(2 2.38)	13.53(21. 97)	14.73(2 2.71)	14.48(2 3.14)	14.03(2 2.79)	14.71(2 2.55)	13.24(2 1.30)	14.29(2 2.22)
N2	15.64(2 3.26)	15.65(2 3.26)	15.43(2 3.11)	14.24(2 23.42)	14.64(2 2.95)	15.96(21. 81)	15.84(2 3.14)	15.2(24. 12)	14.84(2 3.11)	15.55(2 3.19)	13.71(2 1.71)	15.29(2 3.03)
N3	17.25(2 4.55)	16.55(2 4.00)	17.33(2 4.60)	16.04(2 3.81)	18.16(2 3.58)	17.52(24. 00)	16.29(2 3.81)	16(24.9 5)	16.56(2 3.81)	16.36(2 3.81)	14.75(2 2.55)	16.01(2 3.58)
	D2 (30 DAP)			D2 (40 DAP)			D2 (50DAP)			D2 (60DAP)		
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
N1	12.48(2 0.70)	13.45(2 1.50)	12.21(2 0.44)	12.88(2 1.30)	14.64(2 1.89)	14(21.97)	13.24(2 1.34)	13.85(2 1.85)	14.01(2 1.97)	13.17(2 1.30)	11.75(2 0.80)	12.11(2 0.36)
N2	14.05(2 1.97)	1.4(16.8 0)	12.83(2 0.96)	14.24(2 1.97)	1.6(17.9 2)	11.88(22. 55)	13.99(2 1.99)	1.9(7.92)	14.73(2 2.55)	13.88(2 1.89)	1.17(6.2 9)	12.93(2 1.05)
N3	15.75(2 3.38)	14.04(2 1.97)	14.91(2 2.71)	15.52(2 2.38)	14.96(2 2.38)	16.16(22. 95)	14.55(2 2.41)	14.5522 .41)	15.22(2 2.95)	14.13(2 2.06)	21.31(2 0.53)	13.67(2 1.72)
	D3 (30DAP)			D3 (40 DAP)			D3 (50DAP)			D3 (60DAP)		
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
N1	15.48(2 3.34)	13.42(2 3.19)	14.52(2 2.30)	14.13(2 3.190)	12.56(2 3.42)	15.64(24 .27)	16.26(2 3.80)	15.84(2 3.45)	16.89(2 4.27)	13.26(2 1.34)	14.28(2 2.22)	14.69(2 2.55)
N2	15.4(24. 30)	16.88(2 3.89)	16.96(2 3.42)	15.76(2 4.27)	14.16(2 4.42)	14.96(24 .84)	16.87(2 4.25)	16.26(2 3.80)	17.65(2 4.84)	13.89(2 1.89)	15.05(2 2.79)	15.29(2 3.03)
N3	19.3(25. 33)	19.32(2 4.35)	16.4(24. 45)	14.72(2 5.00)	16.72(2 5.10)	18.48(25 .44)	18.01(2 5.10)	18.03(2 5.10)	18.46(2 5.44)	14.73(2 2.55)	15.85(2 3.44)	16.16(2 3.70)
	30 DAP			40 DAP	CRITIC AL DIFFE RENCE		50 DAP			60 DAP		
FACT ORS	SEm	CRITIC AL DIFFE RENCE	FACTO RS	SEm		FACTO RS	SEm	CRITIC AL DIFFE RENCE	FACTO RS	SEm	CRITIC AL DIFFE RENCE	
F1	0.7685	1.5803*	F1	0.8863	1.8222*	F1	0.9232	1.8980*	F1	0.6486	1.3335*	
F2	0.7685	1.5308*	F2	0.8863	1.8222*	F2	0.9232	1.8980*	F2	0.6486	1.3335*	

F3	0.7685	1.5308*	F3	0.8863	1.8222*	F3	0.9232	1.8980*	F3	0.6486	1.3335*	
F1*f2	1.3291	2.7326	F1*f2	1.5332	3.1522*	F1*f2	1.5990	3.2875*	F1*f2	1.1233	2.3095*	
F1*f3	1.3291	2.7326	F1*f3	1.5332	3.1522*	F1*f3	1.5990	3.2875*	F1*f3	1.1233	2.3095*	
F2*f3	1.3291	2.7326	F2*f3	1.5332	3.1522*	F2*f3	1.5990	3.2875*	F2*f3	1.1233	2.3095*	NS
F1*f2*f3	2.3055	4.7401	F1*f2*f3	2.6589	5.4666*	F1*f2*f3	2.7696	5.9429*	F1*f2*f3	1.9458	4.0005	NS

Figures in parentheses are square root transformed values.

Table 2. Thrips population counts on tomato phase -1 rabi 2009 -2010

	D1 (30DAP)			D1 (40DAP)			D1 (50DAP)			D1 (60DAP)		
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
N1	5.58(13.66)	6.12(14.32)	9.06(17.51)	9.55(17.99)	10.24(18.65)	11.84(20.12)	20.14(26.65)	24.05(29.35)	24.46(29.63)	3.12(10.17)	4.21(11.83)	5.24(13.23)
N2	8.25(16.68)	8.84(17.29)	10.27(18.68)	9.84(18.27)	10.55(18.95)	13.44(21.5)	22.28(28.15)	24.92(29.93)	26.11(30.72)	5.45(13.49)	7.91(16.33)	8.66(17.11)
N3	10.25(18.66)	11.24(19.58)	12.55(20.04)	11.86(20.14)	12.44(20.64)	16.33(23.82)	24.41(29.59)	26.66(30.07)	28.29(32.12)	6.44(14.69)	8.02(16.44)	9.55(17.99)
	D2 (30 DAP)			D2 (40 DAP)			D2 (50DAP)			D2 (60DAP)		
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
N1	2.44(8.98)	3.41(10.64)	6.24(14.46)	4.26(11.91)	6.97(15.3)	8.11(16.54)	16.84(24.22)	18.56(25.51)	19.06(25.87)	2.41(8.93)	3.46(10.72)	5.18(13.15)
N2	5.06(12.99)	5.24(12.23)	7.33(15.7)	6.34(14.58)	6.99(15.32)	10.21(18.63)	17.44(24.67)	19.22(25.99)	20.85(27.16)	3.28(10.43)	4.11(11.69)	6.11(14.43)
N3	6.26(14.48)	7.69(16.09)	8.11(16.54)	7.69(16.09)	9.33(17.78)	2.59(9.26)	18.22(25.26)	21.45(27.58)	23.66(29.09)	5.21(13.19)	5.68(13.78)	7.84(16.25)
	D3 (30 DAP)			D3 (40DAP)			D3 (50DAP)			D3 (60DAP)		
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
N1	7.76(16.17)	8.27(16.71)	10.24(18.65)	10.66(19.05)	11.66(19.96)	13.21(21.3)	22.85(28.54)	26.66(31.07)	28.44(32.21)	6.12(14.32)	7.29(15.66)	9.11(17.56)
N2	8.02(16.67)	9.45(17.9)	11.33(19.66)	12.71(20.88)	13.11(21.22)	15.06(22.82)	23.11(28.72)	28.55(32.28)	29.24(32.72)	7.69(16.09)	8.09(16.99)	10.05(17.56)
N3	8.75(17.2)	12.82(20.97)	15.46(23.14)	15.04(22.81)	18.41(25.4)	16.24(23.75)	27.22(31.43)	30.11(32.26)	32.24(34.58)	8.14(16.57)	9.44(17.89)	11.24(19.58)
	30 DAP			40 DAP			50 DAP			60 DAP		
FACTORS	SEm	CRITIC AL DIFFER ENCE	FACTO RS	SEm	CRITIC AL DIFFER ENCE	FACTO RS	SEm	CRITIC AL DIFFER ENCE	FACTO RS	SEm	CRITIC AL DIFFER ENCE	
F1	0.7638	1.5696*	F1	0.8682	1.7841*	F1	0.9252	1.9022*	F1	0.6954	1.4297*	
F2	0.7638	1.5696*	F2	0.8682	1.7841*	F2	0.9252	1.9022*	F2	0.6954	1.4297*	
F3	0.7638	1.5696*	F3	0.8682	1.7841*	F3	0.9252	1.9022*	F3	0.6954	1.4297*	
F1*f2	1.3236	2.7199*	F1*f2	1.5019	3.0788*	F1*f2	1.6024	3.2945*	F1*f2	1.1827	2.4316*	
F1*f3	1.3236	2.7199*	F1*f3	1.5019	3.0788*	F1*f3	1.6024	3.2945*	F1*f3	1.1827	2.4316*	
F2*f3	1.3236	2.7199*	F2*f3	1.5019	3.0788*	F2*f3	1.6024	3.2945*	F2*f3	1.1827	2.4316*	
F1*f2*f3	2.3831	4.8996N S	F1*f2*f3	2.7010	5.5532N S	F1*f2*f3	2.7756	5.7066N S	F1*f2*f3	2.8620	2.8842 NS	

Figures in parentheses are square root transformed values.

Table 3. Influence of different types of Thrips population practices on fruit yield in tomato during *Kharif* and *Rabi* 2009-10 phase- I

Treatment Combination	Yield t/ha					
	kharif - 09			Rabi - 09		
D1S1N1		25.35			26.85	
D1S1N2		27.48			28.98	
D1S1N3		26.64			28.14	
D1S2N1		27.98			28.48	
D1S2N2		28.14			28.64	
D1S2N3		27.25			28.74	
D1S3N1		27.04			28.19	
D1S3N2		26.22			27.82	
D1S3N3		27.56			28.97	
D2S1N1		27.75			29.22	
D2S1N2		27.68			29.18	
D2S1N3		27.05			28.55	

D2S2N1	28.52	29.96
D2S2N2	29.14	30.54
D2S2N3	28.05	29.34
D2S3N1	28.02	29.52
D2S3N2	27.66	28.96
D2S3N3	27.95	29.15
D3S1N1	24.66	26.16
D3S1N2	26.94	27.44
D3S1N3	25.12	26.62
D3S2N1	26.29	27.79
D3S2N2	26.14	27.64
D3S2N3	26.02	27.52
D3S3N1	25.06	26.56
D3S3N2	25.95	27.45
D3S3N3	24.65	26.15
Sem	0.09	0.11
CD5%	0.27	0.33
CD1%	0.35	0.43
CV	1.77	2.23

D=Days after sowing, S=Spacing, N=Nitrogen.

Table 4. Thrips population counts on tomato phase-II *Kharif* 2010.

July 1-10 30DAP - (C1)		July 11-20 40DAP- (C1)		July 21-30 50DAP- (C1)		July 31-Aug-10 60DAP- (C1)		
	B1	B2		B1	B2		B1	B2
S1	2.20 (4.35)	2.71 (6.85)	S1	2.84 (7.57)	2.95 (8.18)	S1	3.53 (11.99)	3.51 (11.81)
S2	2.38 (5.17)	2.98 (8.38)	S2	3.09 (9.05)	3.19 (9.7)	S2	3.58 (12.79)	3.72 (13.34)
S3	2.77 (7.20)	3.16 (9.47)	S3	3.40 (11.07)	3.51 (11.84)	S3	3.65 (12.82)	3.89 (14.64)
July 1-10 30DAP - (C2)		July 11-20 40DAP- (C2)		July 21-30 50DAP- (C2)		July 31-Aug-10 60DAP- (C2)		
	B1	B2		B1	B2		B1	B2
S1	1.90 (3.12)	2.17 (4.21)	S1	2.57 (6.12)	2.79 (7.29)	S1	3.01 (8.56)	3.12 (9.21)
S2	2.44 (5.45)	2.90 (7.91)	S2	2.86 (7.69)	3.08 (8.99)	S2	3.15 (9.44)	3.26 (10.12)
S3	2.63 (6.44)	2.92 (8.02)	S3	2.94 (8.14)	3.15 (9.44)	S3	3.46 (11.47)	3.56 (12.14)
30 DAP		40 DAP		50 DAP		60DAP		
FACTORS	Sem	CRITICAL DIFFERENCE	FACTORS	Sem	CRITICAL DIFFERENCE	FACTORS	Sem	CRITICAL DIFFERENCE
F1	0.6954	1.4297	F1	0.7638	1.5896	F1	0.9252	1.9022
F2	0.6954	1.4297	F2	0.7638	1.5896	F2	0.9252	1.9022
F3	0.6954	1.4297	F3	0.7638	1.5896	F3	0.9252	1.9022
F1*F2	1.1827	2.4316	F1*F2	1.3236	2.7199	F1*F2	1.6024	3.2945
F1*F3	1.1827	2.4316	F1*F3	1.3236	2.7199	F1*F3	1.6024	3.2945
F2*F3	1.1827	2.4316	F2*F3	1.3236	2.7199	F2*F3	1.6024	3.2945
F1*F2*F3	2.8620 0	5.8842	F1*F2*F3	2.3831	4.89960	F1*F2*F3 F3	2.7756 0	5.7066 0

Figures in parenthesis are $\sqrt{n + 0.5}$

C1=cultural practice – 1, c2 = cultural practice – II, B1=barrier crop, B2=with out barrier crop; S1, S2, S3 = three types of sprayings.

Table 5. Thrips population counts on tomato phase-II *Rabi* 2010-11.

July 1-10 30DAP - (C1)		July 11-20 40DAP- (C1)		July 21-30 50DAP- (C1)		July 31-Aug-10 60DAP- (C1)		
	B1	B2		B1	B2		B1	B2
S1	1.91 (3.14)	2.95 (8.22)	S1	3.32 (10.55)	3.75 (13.59)	S1	4.71 (21.65)	5.73 (32.18)
S2	2.41 (5.29)	3.11 (9016)	S2	1.55 (3.89)	4.00 (15.53)	S2	5.09 (25.36)	5.54 (30.14)

S3	2.62 (6.34)	3.43 (11.24)	S3	3.67 (12.96)	4.32 (18.13)	S3	4.13 (16.58)	5.37 (28.36)	S3	1.93 (3.22)	2.84 (7.56)
July 1-10 30DAP - (C2)			July 11-20 40DAP- (C2)			July 21-30 50DAP- (C2)			July 31-Aug-10 60DAP- (C2)		
	B1	B2		B1	B2		B1	B2		B1	B2
S1	1.96 (3.35)	2.77 (7.15)	S1	2.91 (7.94)	3.57 (12.27)	S1	4.14 (16.6)	4.12 (16.44)	S1	1.83 (2.85)	2.62 (6.34)
S2	2.38 (5.17)	3.04 (8.77)	S2	3.47 (11.5 5)	3.74 (13.5)	S2	4.32 (18.14)	4.34 (18.3)	S2	1.93 (3.24)	2.45 (5.48)
S3	2.73 (6.98)	3.29 (9.35)	S3	3.66 (12.9)	4.00 (15.51)	S3	4.38 (18.69)	4.79 (22.46)	S3	2.42 (5.34)	2.39 (5.23)
30 DAP			40 DAP			50 DAP			60DAP		
FACTORS	Sem	CRITICAL DIFFERENCE NCE	FACTORS	Sem	CRITICAL DIFFERENCE NCE	FACTORS	Sem	CRITICAL DIFFERENCE NCE	FACTORS	Sem	CRITICAL DIFFERENCE NCE
F1	0.6486	1.3354*	F1	0.7685	1.5803*	F1	0.8863	1.2823*	F1	0.8563	1.76137*
F2	0.6486	1.3354*	F2	0.7685	1.5803*	F2	0.8863	1.2823*	F2	0.8563	1.76137*
F3	0.6486	1.3354*	F3	0.7685	1.5803*	F3	0.8863	1.2823*	F3	0.8563	1.76137*
F1*F2	1.1233	2.3095	F1*F2	1.3291	2.7326	F1*F2	1.5332	3.1522	F1*F2	1.4837	3.05069
F1*F3	1.1233	2.3095	F1*F3	1.3291	2.7326	F1*F3	1.5332	3.1522	F1*F3	1.4837	3.05069
F2*F3	1.1233	2.3095	F2*F3	1.3291	2.7326	F2*F3	1.5332	3.1522	F2*F3	1.4837	3.05069
F1*F2* F3	1.94580	4.65050	F1*F2* F3	2.3055	4.74010	F1*F2* F3	2.6589	5.46660	F1*F2* F3	2.57010	4.85145

Figures in parenthesis are $\sqrt{n + 0.235}$ transformed

C1=cultural practice – 1, c2 = cultural practice – II, B1=barrier crop, B2=with out barrier crop; S1, S2, S3 = three types of sprayings.

Table 6. Influence of different types of Thrips population practices on fruit yield in tomato during *Kharif* and *Rabi* 2010 phase- II

Treatment Combination	Yield t/ha	
	<i>kharif</i> – 10	<i>Rabi</i> – 10
C1B1S1	28.11	29.05
C1B1S2	27.54	28.64
C1B1S3	26.74	27.86
C1B2S1	27.85	28.04
C1B2S2	27.14	27.56
C1B2S3	26.06	27.14
C2B1S1	27.45	27.85
C2B1S2	27.06	27.47
C2B1S3	26.85	27.32
C2B2S1	27.21	27.94
C2B2S2	27.01	27.55
C2B2S3	26.55	27.26
Sem	0.07	0.15
CD5%	0.22	0.44
CD1%	0.30	0.59
CV	1.48	2.88

C1 = cultural practice – 1, C2 = cultural practice – 2,

B1 = Barrier crop (Sorghum), B2 = with out Barrier crop;

S1, S2, S3 – three types of spraying

DISCUSSION

Reddy *et al.* (1978) recorded high incidence of bud necrosis in groundnut crop sown in July which gradually declined in last sowings and reached to a negligible level in the late sowing taken up in December. In contrary to this, the field trial conducted in the present study have clearly indicated that planting of tomato in the first week of July given

with a normal spacing of 60 X 45cm and with a nitrogen application of 150 kg / ha has proved as the best agronomic practice in keeping the disease incidence low. Amin (1983); Reddy *et al.* (1983a); Reddy *et al.* (1983); Kennedy *et al.* (1990), Gopal (1998); Tsai *et al.* (1995); Dandnaik *et al.* (1996); Patil (1993); Weeks and Hagan (1992); Su and Chen (1986); Kadamben and Ramanujam (1987) have made management studies in groundnut with cultural

practices such as seed rate and spacing, intercropping, maintenance of barrier crops all around, sprays with chemicals and plant products.

Weeks and Hagan (1992) studied date of planting in relation to TSWV and thrips population. Patil (1993) revealed that groundnut crop sown in first fortnight of June showed lower incidence of GBNV (8.3%) than late sown crop (27.2% GBNV). However, the variation in incidence of bud necrosis and the prevalence of vector population totally dependent on local agro-climatic conditions.

REFERENCES

Amin P W (1983). Studies on arthropod vectors of groundnut viruses, their ecology and control. Report of work done from 1978 to 1983, ICRISAT, Patancheru – 502324.

Coutts B.A., Jones R.A.C. (2005) Suppressing spread of tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors, *Annals of Applied Biology*, 146,95-103.

Dandnaik B P Wadikar V B and Mujawar D Y (1996) Varietal response to various diseases of groundnut at different sowing dates on the postrainy season in India. *International Arachis Newsletter* 16: 29-31.

Gopal K (1998) Epidemiology and management of peanut bud necrosis disease and transmission of *Peanut yellow spot virus* by *Scirtothrips dorsalis* Hood in groundnut (*Arachis hypogaea* L.). Ph.D. Thesis, University of Agricultural Sciences, Bangalore, Karnataka, India.

Ghanekar A M Reddy D V R and Rajapakse H S (1979) Leaf curl disease of mung and urdbeans caused by tomato spotted wilt virus. *Indian Phytopathology* 32:163.

Kennedy F J S Rajamanickam K and Raveendran T S (1990) Effect of intercropping on insect pests of groundnut and their natural enemies. *Journal of Biological Control* 4: 63-64.

Kadamban D and Ramanujam M P (1987) Virus disease of Groundnut. *Everyman's Science* PP.111-114.

Patil S A (1993) Bud necrosis disease in Karnataka. In: Proceedings of a workshop on collaborative research in India on breeding groundnuts for resistance to bud necrosis disease, September 28-31, 1992, ICRISAT Asia Centre, Patancheru, Andhra Pradesh, pp.28-31.

Reddy K S, Rao A A and Reddy D V R (1978) Studies on the bud necrosis disease of groundnut (*Arachis hypogaea* L.). *Andhra Agricultural Journal* 25 : 40-48.

Reddy D V R and Mc Donald D (1983) Management of groundnut diseases. Proc. National Seminar on management of diseases of oil seed crops, Madhuri pp1-8.

Reddy D V R Amin P P Mc Donald D and Ghanekar A (M1983a) Epidemiology and control of groundnut bud necrosis and other diseases of legume crops in India caused by tomato spotted wilt virus. Pp. 93-102, In *Plant Virus Epidemiology* (Plumb R T and Thresh J M eds.) Oxford: Blackwell Scientific Publications.

Ramkat R C Wangal A W Ouma J P Rapando P N Leigut D K (2008) Cropping system influences Tomato spotted wilt virus disease development, thrips population and yield of tomato (*Lycopersicon esculentum*) *Annals of Applied Biology* ISSN 0003-4746 Pp 373-380.

Su H P and Chen L S (1986) Thrips associated with pappers and their control. *Buellton of Hualien diseases*. 2:73-85.

Suzuki H Tamaki S and Miyara A (1982) Physical control of *Thrips palmi* Karny. *Proc. Assoc. Plant Protection Kyushu* 28:134-137.

Singh S J and Krishna Reddy M (1996) Watermelon Bud Necrosis : A new Tospovirus disease. *Acta Horticulturae* 431-68-77.

Todd J M Ponnaiah S and Subramanyam (1975) First record of *Tomato spotted wilt virus* from the Niligiris in India. *Madras Agricultural Journal* 521(3): 162-163.

Tsai J H Yue B Webb S E Funderburk J E and Hsu H T (1995) Effects of host plant and temperature on growth and reproduction of *Thrips palmi* (Thysanoptera : Thripidae). *Envrionmental Entomology* 24 : 1598-1603.

Weeks J R and Hagan A K (1992) Intergrating cultural and insecticidal control practices. *Proceedings of American Peanut Research and Educational Society* 24:36.