

GROWTH RESPONSE OF *HELIANTHUS ANNUUS* CV. SINGLE MINIATURE TO SULPHUR DIOXIDE POLLUTION

Ritu Goswami*

Department of Botany, R.R. Bawa DAV College for Girls, Batala, (Punjab) 143505
Email: rritu22@yahoo.com

Received-04.04.2016, Revised-22.04.2016

Abstract: Sulphur dioxide (SO_2) is one of the principal contributor to air pollution. In the gaseous form it is called as primary pollutant but when it binds moisture from the air and forms aerosols of sulphuric- and sulphurous acid which are deposited as acid rain, it acts as secondary pollutant. Plants after exposure to SO_2 show altered growth patterns. The ornamental cultivar cv. Single Miniature of *Helianthus annuus* L.(family Asteraceae) on fumigation with four cumulative doses 2612, 3265, 3918 and $4571 \mu\text{g m}^{-3}$ of SO_2 manifested a decline in the length, fresh weight and dry weight of shoot, root and whole plant respectively. These growth attributes were studied at 30th, 50th, 70th and 90th day of the fumigated cultivar along with a control set. The concentration of pollutant and duration of exposure measure the severity of injury in the fumigated plants. The present investigation reveal that sulphur dioxide acts as a kind of stress to plants.

Keywords: Aerosols, Growth, *Helianthus*, Pollutant, SO_2

INTRODUCTION

Among the various air pollutants, sulphur dioxide (SO_2) is one of the principal contaminants. Sulphur dioxide cause severe damage to vegetation under natural and control conditions (Verma and Agarwal,1996).Acute and chronic exposure to SO_2 can result in the general disruption of photosynthesis, respiration, as well as, other metabolic and fundamental cellular processes (Ewald and Schlee,1983).Sensitivity of SO_2 varies within and amongst plant species (Yusuf et al.,1985) and also depends upon the plant age, its development and various ecological conditions like solar radiation, temperature, humidity and edaphic factors (Heck and Dunning,1978).In the present study, long term effects of different concentrations of SO_2 were studied on various growth parameters of the ornamental cultivar ,cv.Single Miniature of *Helianthus annuus* L.(family Asteraceae).

MATERIAL AND METHOD

Seeds of *Helianthus annuus* cv. Single Miniature were procured from IARI, New Delhi. The seeds were sown in polythene bags filled with sandy loam soil. The plants were treated with 2612, 3265, 3918 and $4571 \mu\text{g m}^{-3}$ SO_2 for 2h daily from 11th day to maturity of the crop using 1m^3 polythene chambers in which circulation of air was maintained by a small fan to facilitate thorough mixing of air inside the chambers. The SO_2 gas was prepared chemically by reacting sodium sulphite with concentrated sulphuric acid. A control set was also run in identical conditions but without exposure to SO_2 .The plant samples were studied at 30th, 50th, 70th and 90th day for various growth parameters (length of shoot, root and whole plant, fresh weight of shoot, root and whole plant, dry weight of shoot, root and whole

plant).The individual plants were dug out from the soil carefully having the root and shoot system intact. The plants were washed thoroughly with tap water to detach soil mass adhering to the roots followed by air drying on blotting papers. The length of shoot and root was measured separately and their total was considered as whole plant height. Later, shoot and root was weighed separately for their fresh weight. For dry weight estimation, plant parts were dried in an oven at 80°C for 24h and weighed. Fresh- and dry weight of the whole plant was estimated by mere addition of fresh- and dry weight of shoot and root respectively.

RESULT

Findings regarding the effect of pollutant revealed that SO_2 affected the studied cultivar adversely. It was noted that higher was the concentration of the pollutant, more prominent were the effects (Table - 1). A pronounced reduction in shoot, root and total plant height was observed. However, the root length was found to be decreased more than the shoot length. Plant height in 90d old plants at $4571 \mu\text{g m}^{-3}$ of SO_2 showed 60% reduction. Fresh weight of shoot, root and whole plant showed appreciable decrease with roots showing more losses in comparison to shoot and the reductions were significant at 1% level from the age of 30d onwards at concentration $4571 \mu\text{g m}^{-3}$ of SO_2 . Dry matter accumulation revealed that dry weights of shoot, root and whole plant showed more appreciable reductions as compared to their fresh weights. However, decrease in dry weight of root was more than that of shoot.79.37% decrease was recorded in root dry weight at 50d old plants at $4571 \mu\text{g m}^{-3}$ of SO_2 .

*Corresponding Author

DISCUSSION

The present investigation revealed that sulphur dioxide act as a kind of stress to plants and its fumigation caused considerable reduction in different growth attributes. A response in shoot length is a convenient, and relatively sensitive parameter of plant growth. However reduction in root length was more than in shoot, which can be explained by the fact that roots come in contact with the pollutant earlier than shoot (Wali,2000). Phytomass is an additional and better measure of growth in comparison to height because it incorporates all the tissues whereas height measures only the tallest part of the plant. In the present case, reduction was higher in roots in comparison to shoots. Reduction in root

biomass of the plant is due to slow translocation of metabolites in the roots as photosynthetic activity is depressed by the pollutant (Saxe,1983). Kasana and Mansfield (1986) opined that more assimilates are retained in the shoots and less transported to the roots, so that there are more reductions in the biomass of the roots than shoot. It is quite clear from the observations that the magnitude of damage caused by 2612,3265 $\mu\text{g m}^{-3}$ of SO_2 were lesser in comparison to 3918 and 4571 $\mu\text{g m}^{-3}$ SO_2 . Moreover, the pollutant produced more appreciable effects on 90d old plants than 70, 50 and 30d old plants. Such effects of SO_2 with increasing age of the plants have also been reported by Bell (1982) in grasses and Prasad and Rao(1982) in legumes and cereals.

Table 1. Growth response of *Helianthus annuus* L.cv. Single Miniature on exposure to different concentrations of SO_2 .

Plant age,d	SO_2 ($\mu\text{g m}^{-3}$)	Attribute					
		Shoot length (cm)	Root length (cm)	Shoot fresh wt(g)	Root fresh wt(g)	Shoot dry wt(g)	Root dry wt(g)
30	0	28.20	15.16	8.407	2.374	2.219	0.834
	2612	24.02	13.84	7.567	2.111	2.052	0.733
	3265	22.04*	10.82**	6.732**	1.639	1.813	0.534
	3918	20.94*	9.040**	5.895**	1.404**	1.566**	0.381
	4571	18.94**	7.720**	4.922**	1.183**	1.278**	0.218**
	CD5%	6.162	3.323	1.107	0.755	0.524	0.526
	CD1%	8.639	3.592	1.197	0.817	0.566	0.569
50	0	51.88	22.24	21.14	8.679	11.73	5.106
	2612	43.56	15.78**	15.86**	5.548**	8.391**	3.138**
	3265	38.40**	12.94**	12.25**	4.513**	6.424**	2.307**
	3918	37.80**	10.98**	11.35**	3.976**	5.837**	1.862**
	4571	33.94**	8.300**	8.962**	3.136**	4.146**	1.053**
	CD5%	9.243	2.172	1.657	1.250	0.938	0.871
	CD1%	12.95	2.348	1.791	1.351	1.014	0.942
70	0	78.50	30.08	35.94	18.84	19.79	11.35
	2612	63.88**	20.56**	27.65**	12.56**	15.88	7.757*
	3265	48.38**	16.40**	20.93**	9.537**	10.92**	5.033**
	3918	42.92**	11.72**	16.91**	7.316**	8.033**	3.398**
	4571	38.36**	9.460**	14.44**	6.452**	6.745**	2.614**
	CD5%	2.498	1.615	5.951	5.671	5.716	3.484
	CD1%	2.700	1.745	6.432	6.130	6.178	3.766
90	0	94.52	43.86	48.00	28.21	30.33	18.31
	2612	76.54**	29.28**	33.80**	17.80**	21.71**	11.48**
	3265	57.04**	21.68**	24.98**	12.74**	14.83**	7.220*
	3918	50.90**	16.66**	20.67**	9.531**	11.05**	4.956**
	4571	42.05**	12.56**	18.12**	7.541**	9.638**	3.824**
	CD5%	1.954	2.009	12.79	6.933	6.337	5.699
	CD1%	2.112	2.172	13.83	7.494	6.850	6.160

CD – Critical difference

*Significant at 5% level.

**Significant at 1% level.

CONCLUSION

It is delineated from the above analyses that all the four concentrations of SO_2 used in the experiment affected the studied cultivar adversely causing appreciable reductions in growth attributes.

ACKNOWLEDGEMENT

I am grateful to Prof. G.Prakash, my guide, Rtd. Head, Dept. of Botany, C. C. S. University, Meerut, for his guidance and support.

REFERENCES

Bell, J.N.B. (1982) Sulphur dioxide and the growth of grasses. In *Effects of Gaseous Pollution in Agriculture and Horticulture* (eds Unsworth M S & Ormrod D P) Butterworths, London pp 225-246 *Environ. Pollut.* **21** 57-70.

Ewald, D. and Schlee, D. (1983) Biochemical effects of sulphur dioxide on proline metabolism in the alga *Trebouxia* sp. *New Phytol.* **94** 235-240.

Heck, W.W. and Dunning, J.A. (1978) Response of oats to SO_2 *J. Air Pollut. Assoc.* **28** 241-246.

Kasana, M.S. and Mansfield, T.A. (1986) Effects of air pollutants on the growth and functioning of root. *Proc Ind Acad Sci* **96 (6)** 411-429.

Prasad, B.J. and Rao, D.N. (1982) Relative sensitivity of a leguminous and a Cereal crop to SO_2 pollution.

Saxe, H. (1983) Long term effects of low levels of SO_2 on bean plants (*Phaseolus vulgaris*) II Emission response effects on biomass production quantity and quality *Pl- Physiol.* **57** 108-113.

Verma, M. and Agarwal, M. (1996) Sulphur dioxide pollution and plants: A review *Ecology* **11(1)** 1-5.

Wali, B. (2000) Plant growth, stomatal response, pigments and photosynthesis of *Althea officinalis* as affected by SO_2 stress *In National Seminar on Plant Physiological Paradigm for Fostering Agro and Biotechnology and Augmenting Environment Productivity in Millennium 2000* Lucknow.

