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Abstract: The abundance of transcription factor binding sites (TFBSs) on promoter sequences differs from gene to gene.
Understanding how this difference affects gene expression would enable us to develop superior lines through allele mining
based genomic selection or genome editing. To understand the relationship between the TFBSs abundance and transcription
in carbohydrate metabolism-related genes that are central to growth and grain yield in rice. For this, we first analysed the
expression pattern of four carbohydrate metabolism-related enzymes - Sucrose Phosphate Synthase (SPS), PME (Pectin
Methyl Esterase), Galacturonosy| transferase (GalAT) and Phosphoglucomutase (PGM). Then, we obtained a reliable set of
TFBSs on the core and distal promoters of these genes following Supp ort Vector Machine (SVM) method and stringent cut
off of 90% TFBS motif similarity. Fold change in gene expression during phenology change from vegetative to flowering
showed a linear relationship with the TFBS abundance in the case of an SBP family transcription factor, SPL12. Further,
identification of CpG islands in the promoters explained the deviations in this linear relationship between gene expression
and TFBS abundance. Using two DNA parameters - the TFBS abundance and the CpG islands - we provide predictive

insights to the gene expression of carbohydrate metabolism-related genes in rice.
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INTRODUCTION

ene expression is regulated precisely at multiple

levels with transcriptional regulation at the
bottom. Transcription is a complex function of
various factors viz.,, amount of transcription factors
(TFs), affinity of TFs to the respective transcription
factor binding sites (TFBSs), methylation status of
the upstream regulatory sequences as well as the
availability of suitably exposed TFBS (Brignall et al.
2019; Suzuki & Bird 2008). The amount of TF is
further affected by protein movement, mitotic protein
dilution and miRNA-controlled transcript
accumulation (Hofhuis and Heidstra 2018; Samad et
al. 2017). Many genes are regulated through TF
affinity as well, for instance, WUS regulates CLV3
through binding site affinity in apical meristem
(Hofhuis and Heidstra 2018). Methylation status of
promoter regions is known to play critical role in
transcriptional regulation (Suzuki & Bird 2008).
Though motif predictions identify numerous TFBS
on promoter sequences, it is unknown if all of them
are involved in TF binding. Therefore, identifying
the functional TFBS from a set of predicted TFBS is
a difficult task in the absence of TF binding assay
experiments such as ChIP-Chip and ChIP-Seq
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(Robertson et al. 2007; Mikkelsen et al. 2007,
Johnson et al. 2007). Here we are providing insights
on the relationship between the abundance of
transcription factor binding sites and gene expression
in the transcriptional level, using bioinformatics and
gPCR expression study.

For this analysis, we chose sucrose, starch and pectin
metabolism-related genes due to their importance in
growth and grain yield in rice (Fu et al. 2011,
Gebbing and Schnyder 1999; Daynard et al. 1969;
Deng et al. 2016; Peaucelle et al. 2011). Sucrose
Phosphate Synthase (SPS) is a key enzyme in the
biosynthesis of sucrose (Bruneau et al. 1991).
Phosphoglucomutase (PGM) inter-converts G-1-P to
G-6-P and positively impact the sucrose biosynthesks.
PGM is attributed to plant growth, seed and root
development (Malinova et al. 2014). Galacturonosyl
transferase (GalAT) is the major component of pectin
biosynthesis protein machinery and has key roles in
plant growth and development (Orfila et al. 2005;
Sterling et al. 2006; Godoy et al. 2013). Pectin
Methyl Esterase (PME) is another important enzyme
associated with cellular growth in plant and thereby
affecting yield (Wen et al. 1999; Louvet et al. 2006;
Fujita et al. 2010). It contributes to the stiffening of
the cell wall by producing blocks of de-methyl
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esterified carboxyl groups that can interact with
calcium ions forming a pectate gel (Bosch et al.
2005) and it was shown to have a role in determining
the growth rate in the model plant Characoralina
(Proseus et al. 2006)

Here we quantified TFBS abundance in the
promoters of genes related to carbohydrate
metabolism and correlated with the expression data
from gqPCR experiments during the mid-vegetative
stage to flowering stage

MATERIALS AND METHODS

Plant material

Indica rice variety Gothra Bidhan-3 was planted in
pots during Kharif season with three biological
replications. Leaf samples were collected at mid
vegetative stage (45 days after germination) and 3
days after panicle emergence. To understand the
trend in gene expression during mid vegetative to the
flowering stage, samples were collected at 45 days
(mid) and 65 days (late) after sowing.

Real-time expression using gPCR

For conducting Real-time gPCR, we isolated total
RNA from each leaf sample using Trizol method
(Chomczynski and Mackey 1995). The extracted
RNA was treated with DNase | (Thermoscientific) as
per the manufacturer’s instructions and quality and
quantity were assessed using a spectrophotometer.
This RNA was used for First-strand cDNA synthesis
using oligo dT primers from Revert Aid First Strand
cDNA Synthesis Kit (Thermo Scientific). The first-
strand cDNA synthesis reaction was set up as per the
manufacturer’s instructions. Using the Quant prime
online server (http://quant  prime.mpimp-goim.
mpg.de/), we designed the qPCR primers specific to
target genes and the internal control genes (Table 2).
Actin was used as an internal control. Real-time PCR
was set up in Roche 96 light cycler machine using
Takara Bio SYBR Green Master Mix following
gPCR protocols given in Table 3. For each biological
replicate, there were three experimental replicates
PCRs were set up. Primer optimization titration
experiments were conducted to avoid interference
from primer dimers and non-specific amplification.
After gPCR, we calculated the relative expression by
the comparative Cq method and expressed as a fold
change of expression. Statistical significance was
tested using student t-test at confidence level 0.001.
Database search and promoter sequence
extraction

The abundance of TFBSs was obtained by following
a protocol as depicted in Fig. 1. The KEGG database
(https://www.genome.jp/kegg/) (Kanehisa and Goto
2000) search for sucrose and starch metabolism-
related genes retrieved a set of enzymes and their EC
numbers. The enzyme names were obtained from the
BRENDA database (https://www.brenda-enzymes.
org/) (Jeske et al. 2019) and subsequent keyword

search in RAP-DB (https:/rapdb.dna. affrc.go.jp/)

(Sakai et al. 2013) provided a set of rice enzymes
involved in sucrose and starch metabolism. Pectin
metabolism-related enzymes were added to this data
set. All locus IDs thus obtained were used to search
in PlantPAN 30 (http://plantpan.itps.
ncku.edu.tw/indexhtml) (Chow et al. 2019) and
obtained the 1000bp upstream promoter sequence of
each gene.

Transcription factor binding site (TFBS)
prediction

PlantPAN3.0 collects plant transcription factor
binding profiles from PLACE, TRANSFAC (public
release 7.0), ACRIS, and JASPER databases. The TF
binding sites having more than 90% similarity were
shortlisted as most likely TFBS and obtained the TF
distribution map/network diagram through the ‘Gene
group analysis’ option in PlantPAN3.0 within the
rice genome. The abundance of each TFBS was
obtained by counting the conjoined locations in the
TF distribution map/network diagram.

CpG/CpNpG island prediction

In plants, DNA methylations are found on the
cytosine of CpG and CpNpG islands (Pradhan et al.
1999; Cao and Jacobsen 2002; Lindroth et al. 2001).
CpG/CpNpG islands prediction was based on Ponger
and Mouchiroud’s method (Ponger and Mouchiroud.
2002). CpG/CpNpG islands were defined as the
DNA regions that are longer than 500 nucleotides,
with a moving average C+C frequency of above 0.5
and a moving average CpG/CpNpG observed/
expected (o/e) ratio more than 0.6 (Ponger and
Mouchiroud. 2002). The predictions were performed
using CpG island prediction tool in PlantPan 3.0
(Chang et al. 2008; Chow et al. 2019)

RESULTS AND DISCUSSION

Transcript lewels of SPS, PME, GalAT and PGM
during phenology transition from mid-wegetative
to flowering stage

There was a marked increase in gene expression of
SPS and PME during flowering compared to the mid
vegetative stage. The fold changes of expression in
SPS and PME during the flowering stage were 3.03
and 1.76 folds respectively (Fig. 1). GalAT and PGM
levels also increased during flowering but to a lower
extent. The gene expressions of GalAT and PGM
during flowering were 1.35 and 1.14 folds over the
mid vegetative stage (Fig. 1).

To understand the pattern of gene expression just
before the flowering stage, we performed a qPCR
experiment during the late vegetative stage and the
fold changes were calculated over the mid vegetative
stage (Fig. 2). SPS expression during the late
vegetative phase over mid vegetative phase was 3.00
folds, comparable to that during flowering
(3.03folds). This indicates that there was no
significant induction of SPS expression during late
vegetative to flowering stage. PME expression
during the late vegetative phase was 1.05 folds,
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which was lower than that during flowering. This
suggests that there is a considerable induction of
PME after the late vegetative stage (Fig. 2).

Unlike SPS and PME, GalAT and PGM gene
expressions decreased drastically during the late-
vegetative stage as indicated by the negative fold
changes of -3.67 and -2.09 folds respectively (Fig.
2). This decrease was followed by a hike revealing
the induction of GalAT and PGM genes during
flowering. Both the genes are known to be involved
in molecular processes during the reproductive stages
of plant growth (Egli et al. 2010; Wang et al. 2013).
TFBS abundance of an SBP family transcription
factor and gene expression

SBP family transcription factor SPL12is known to be
induced during phenology transition from vegetative
to the reproductive stage and is an important member
regulating plant transition from juvenile to adult
(Shikata et al. 2009; Xu et al. 2016, Wang et al.
2016). TFBS abundance was the highest in PME
promoter with five SPL12 binding sites followed by
GalAT and PGM (Fig. 3). The expression data of
these three genes also followed the same trend -
highest in PME, followed by GalAT and PGM (Fig.
1). SPS promoter showed the lowest SPL12 binding
sites harboring just one site (Fig. 3). In line with this,
change in expression of SPS gene also remained
more or less the same with 3.00 and 3.03 folds
during late vegetative and flowering stages
respectively (Fig. 1, 2). However, the inducibility of
GalAT and PGM appears to be more during the late
vegetative stage to flowering (from -ve fold change
to positive), even though they had a lower number of
SPL12 binding sites compared to PME. This
suggests the involvement of additional factors such
as the position of the TFBS and methylation patterns
in the regulation of gene expression during
flowering.

TFBS position and CpG islands on 1Kb promoter
In the PME promoter, the SBP binding sites were
mostly congregated in the core promoter, whereas in
the case of SPS and PGM promoters they were in the
distal promoter region (Fig. 4). In the case of GalAT,
there was one site at the core promoter, remaining
were at the distal promoter. Only PME promoter
harbored most of the SPL12 binding sites on its core
promoter region possibly contributing to its steady
increase in expression during the mid-vegetative
stage to flowering.

Chip-Chip experiments have shown that TFBS that
contain CpG are involved in constitutive gene
expression and some CpG containing sequences are
also involved in inducible and tissue-specific gene
regulation (Rozenberg et al. 2008; Luu et al. 2013).
Our analysis identifies CpG islands in the entire 1Kb
promoters (covering core and distal promoter
regions) of SPS (Fig. 5a) which are indicative of
possible methylation at these sites. The single SPL12
site identified at -500bp position is located within
this CpG island. In PME only distal ~600bp (-1000

to -367bp) region was found to have CpG island
sparing all the SPL12 binding sites in the core
promoter (Fig. 5a). In GalAT, the promoter region
between -893 to -253 (covering parts of the core and
distal promoter) was detected to be GC rich, leaving
just two SPL12 binding sites outside the CpG island
(Fig. 5a). No CpG island was located in the PGM
promoter. The G+C, G/C ratio and start-up score
were highest in SPS followed by PME and GalAT
(Fig. 5b). Separation of SPL12 TFBS to core
promoter and the CpG islands to the distal promoter
would have been playing a role in the steady
induction of PME from mid vegetative stage to
flowering. In the case of GalAT and PGM, two
SPL12 TFBS have been available without
interference from methylation (Fig. 4) yielding a
slight induction in gene expression during flowering.
In the case of SPS, there was no induction as the
entire promoter was predicted to be a CPG island
which encompassed the single SPL12 site it
harboured. Taken together, it can be deduced that the
presence of CpG islands and the TFBS abundance
are contributory factors in the regulation of
expression of these genes during flowering.

Though SPS induction during flowering was
negligible, the fold change of gene expression of SPS
remained higher than other genes. Similarly, there
was down regulation of PGM and GalAT during the
late vegetative stage. These deviations could be
attributed to TF concentration or methylation like
mechanisms of chromatin remodeling (Ballare et al.
2013).

Prediction of expression  of
metabolism-related genes

Based on this understanding of SPL12 binding sites
and gene expression during flowering, we analysed
1Kb promoter regions of genes related carbohydrate
metabolism following the schema in Fig. 6 in an
attempt to predict expression levels of genes during
flowering in rice. It is most likely that Sucrose
phosphate phosphatase (SPP), which is having the
maximum number of SPL12 binding sites in its
promoter get maximally induced during flowering
(Fig. 7a). SPP harboured nine SPL12 binding sites
and no CpG island in its promoter making us predict
higher induction during flowering (Fig. 7a, 7b). On
the other hand, isoamylase, beta - fructofuranosidase
and starch phosphorylase had the least number of
SPL12 binding sites (Fig. 7a). Beta -—fructofu-
ranosidase and starch phosphorylase do not have any
CpG island, whereas isoamylase has G/C rich
regions (Fig. 7b, c) and therefore can be predicted to
be poorly induced during flowering. In the case of
NDP Glucose - starch Glucosyl transferase, Fructo-
kinase and Sucrose phosphate phosphatase genes the
TFBS were mostly in the core promoter regions

carbohydrate
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whereas in starch phosphorylase there was no TFBS
present in the core promoter (Fig. 8).

TF families with abundant TFBSs

Further, to understand the expression of carbohydrate
metabolism-related genes under different
spatiotemporal and environmental conditions, we
obtained the TFBS distribution pattern of seven
different  transcription factor families. TFBSs
corresponding to three transcription factors, B3
(IDEF), NFYB and TCP families were the most
abundant with an average number of TFBSs ranging
from 18-25 (Fig. 9a). TFBSs of other transcription
factor families were sparse with average number of
sites ranging from 3-6 (Fig. 9b). The distribution
maps of TFBSs of B3, TCP and NFYB reveal
uniform distribution throughout the promoter (Fig.
10, 11, 12).

B3 family: B3 family transcription factor, IDEF1, the
expression is known to be induced by Fe deficiency
(Kobayashi 2007; Ogo et al. 2008; Kobayashi et al.
2010). The TFBSs of IDEF1 was highest in NDP-
glucose-starch glucosyltransferase and isoamylase
(Fig. 13). However, isoamylase expression could be
reduced due to the presence of CPG island in its
promoter (Fig. 7a) to a lower level than starch
synthase in response to IDEF1. In contrast, the
promoter of Glucose 6-Phosphate isomerase (GPI)
harboured the least number of TFBSs for IDEF1 and
predicted to have CpG island (Fig. 7b, c¢). This
suggests a scanty expression of GPI during lron
deficient conditions. GPl is involved in starch
accumulation in Mesophyll Cells, Growth and
Photosynthetic Capacity and antioxidant metabolism
mediated stress tolerance (Bahaji et al. 2015; Seong
et al. 2013). This suggests that down regulation of
GPI due to absence of IDEF1 binding sites in its
promoter could be a contributing factor in growth
retardation under iron deficient conditions. Allele
mining or genome editing targeting large number of
the IDEF1 binding sites on GPI promoter can lead to
development of stress tolerant lines.

NFYB family: NFYB is a ubiquitous, drought-
responsive transcription factor (Li et al. 2008). SPP,
due to a large number of NFYB binding sites and the
absence of CpG islands, is expected to be induced
during drought stress. However, a lower starch
synthase transcription is expected in response to
drought owing to the lower NFYB binding sites as

well as the presence of a CpGisland in its promoter
(Fig. 7b, c).

TCP family: TCP is directly involved in leaf
development and growth hormones signalling (Li et
al. 2015). TCP binding sites predominate in the core
promoters of SPS and Fructo kinase genes (Fig. 13).
SPS due to the presence of CpGisland, would not be
responding much to TCP family TFBS.

TF families with sparse TFBS
Relatively sparse TFBS with a 3-6 average number

of sites were found for bHLH, bZip, Homeo and SBP
transcription factors (Fig 9, Fig. 14). The bHLH sites
were highest in starch synthase and isoamylase. SPP,
GPI and PGM promoters harboured the least number
of bHLH binding sites. The bZIP sites were in
general lesser compared to other sites. Notably, Beta-
fructofuranosidase, has only one site for bZIP family
transcription factor.

Congregation of TFBS in core
promoters

In the case of TF families for which the TFBSs were
abundant, they appeared in core as well as distal
promoters. For instance, the average percentage of
the three most abundant TFBs in the 300bp core
promoter region ranges from 31-39% (Fig. 10, Table
1), leaving 61-69% of TFBS distributed over
700bp. In contrast, in the case of sparse TFBSs, the
binding sites showed distinct positioning. For
instance, SPL12 sites in PME were congregated at
the core promoter (Fig. 4), whereas in the case of
starch phosphorylase and PGM they were mostly
distributed at the distal promoter (Fig. 8).

Variation in promoters

Sequence variations between promoter sequences of
different alleles of the same gene from different
cultivars or haplotypes would result in differences in
TFBSs and therefore gene expression. Therefore, the
indels and substitutions in the promoters of select
genes of two indica cultivars (Shushui 498 and
RPBi0-226) were compared with that of the japonica
cultivar Nipponbare. The promoters showed high
identity (>98%) with few mutations (Table 4). The
predicted TF binding sites of SPL12 did not overlap
with the mutant sites. However, in GalAT, the
proximal promoter was found to be highly variable
and one SPL12 binding site on GalAT at position
957 (Table 4) was found to be within this variable
region.

and distal
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Fig. 1 gPCR expression of SPS, PME, GalAT and PGM during flowering stage compared to mid vegetative
stage in indica variety GothraBidhan-3. Y-axis shows the fold change of expression and the bars shows the

Fig. 2 Fold-change of gene expression from real-time gqPCR experiment is shown in Y axis for SPS, PME,
GalAT and PGM during late vegetative stage compared to mid vegetative stage in GothraBidhan-3. Error bars in
the graph is the standard deviation of the mean fold change in gene expression for 3 biological replicates.
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Fig. 9 a) Graph showing the distribution pattern TFBSs corresponding to 8 different transcription factor family
proteins on the 1Kb promoter sequences of the select carbohydrate metabolismrelated genes b) Average number
of TFBSs over the different carbohydrate metabolism related genes
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Fig. 10 Map showing the distribution of TFBS of B3 transcription factor family on 1Kb promoter region of
select carbohydrate metabolism related genes
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Fig. 11 Map showing the distribution of TFBS of NFYB transcription factor family on 1Kb promoter region of
select carbohydrate metabolism related genes



JOURNAL OF PLANT DEVELOPMENT SCIENCES VOL. 15(5) 269

0 - T v v ]
2
3

Fig. 12 Map showing the distribution of TFBS of TCP transcription factor family on 1Kb promoter region of
select carbohydrate metabolism related genes

Relative Expression

0 -

]
o

noizza1gx3 svitslafl
“
oo

1 -

Fig. 13 Graph showing the TFBS frequency of a) B3, b) NFYB c¢) TCP and d) others on 1Kb promoter of select
carbohydrate metabolism related genes
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Fig. 14 Graph showing the TFBS frequency of transcription factor families -bHLH, bZip, Homeo and SBP.

Table 1. List of gPCR primers used in this study

ID Locus Description Primer Size(b
p)
0Os01t0919400- LOC_Os01  Sucrose- Forward 5’CGAGGTCACAAGCACTCAGGTATC 125
00 069030 phosphate 3’
synthase Reverse CGTCTTGTGTAACCCTGACAGC
(EC 2.4.1.14).
0s03t0712700- LOC_0s03  Phosphoglucom  Forward GACAACCTTGGAGGCGATAAGC 120
01 950480 utase Reverse ~ AGCAGCTCCAGCATCAACATTCTC
(EC5.4.2.2)
0s01t0788400- LOC_0Os01  Pectin  methyl Forward CGACGGCTCCACAACTTTCAAC 83
01 057854 esterase Reverse TGTTCTCCACCTTGAGGTCCTG
(EC 3.1.1.11)
0Os06t0712500- LOC_0Os06  GalAT Forward TGATGCTGAACTTCCCAAGAGTGC 130
01 049810 (EC24.1.-) Reverse AGCATCGCTCTTAACCGCTGAG
0s04g57210 LOC Os04  actin forward CCGGTGGATCTTCATGCTTACCTGG 213
057210.1 actin reverse CGACGAGTCTTCTGGCGAAACTGC

Table 2. List of enzymes related to starch and sucrose metabolism and percentage of TFBSs falling in core
promoter region in 1Kb promoter sequences of their genes

Sl Enzyme name

No

1 Sucrose-phosphate synthase

2 Phosphoglucomutase

3 4-alpha-galacturonosy ltransferase (Similar to
QUASIMODO1)

4 Pectin methy| esterase

5 Cellulosesynthase (UDP-forming)

6 NDP-glucose-starch glucosy Itransferase

7 Fructokinase

8 Sucrose-phosphate phosphatase

9 Alpha-amylase

10 Glucan 1,4-alpha-glucosidase

11 Beta-fructofuranosidase

12 Isoamy lase

Id No

0s01t0702900-01
0Os03t0712700-01
0Os06t0712500-01

0s01t0788400-01
0s01t0750300-01
0s06t0133000-01
0s01t0851000-01
0s01t0376700-01
0s01t0357400-01
0s01t0276800-01
0s01t0966700-01
0Os05t0393700-01

% of TFBS in core promoter

B3

33.33
28.57
30.00

31.25
39.13
17.24
33.33
28.57
41.18
30.00
56.25
36.00

NFYB
35.29
15
47.36

35.29
38.89
30.77
56.25
4231
40

38.10
28.57
18.75

TCP

43.75
35.71
27.27

29.17
30.44
35.71
30.30
60.00
42.86
21.43
50.00
51.61
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13 Glucose-6-phosphate isomerase 0s03t0776000-01 25.00 27.27 57.14
14 Beta-Phosphoglucomutase 0s06t0109500-01 27.78 30.44 27.27
15 Starch phosphorylase 0s01t0851700-01 16.67 31.58 43.75
Awerage % of TFBS in core promoter 31.62 34.39 39.10
Table 3. Real-time gPCR protocol
Process Time
Pre-incubation
95°c 600 seconds
Two step
95°c 15 seconds
58°c 15 seconds
Melting curwe
95°c 10 seconds
65°c 60 seconds
97°c 60 seconds
Cooling
37°c 60 seconds
Table 4. Single nucleotide Substitutions and indels in comparison with Nipponbare sequence
Promoter Cultivar % ID Hit Substitutions/ Indels Position of
SPL12 binding
site Nipponbare
SPS Shuhui498 98.80 CP018157.1 C13G, A293G, C347T, A350G, G36lA, 488-490
C408T, A426G, G436A, C515T, T553C,
T578-, C920A
RP Bio-226 98.80 CP012609.1 C13G, A293G, C347T, A350G, G361A,
C408T, A426G, G436A
PGM Shuhui498 98.80 CP018159.1 A15G, GI109A, G111A, A112G, C135T, 221,420
A490G, A568C, G623T
RP Bio-226 99.20 CP012611.1 A15G, G109A, G1l11A, A112G, C135T,
A490G, A568C, G623T, A708T, A709-, -
743C, C785-
PME Shuhui498 99.20 CP018157.1 T63C, T90C, -263G, -263G, 602, 619,
-263A, G740A, C822T, C830A 626,661,
RP Bio-226 99.40 CP012609.1 T90C, -263G, -263G, -263A, C822T, C880A 721,776,889
GalAT Shuhui498 98.14 CP018162.1 A97G, A107-,A108T, A255G, G444A, 12,121, 432, 957
Ab514G, T626A, T627-,T655C, A716G,
T735C,-757T,
-758G, -759T, -760A,T800G, T844G, 912-
1000 highly variable
RP Bio-226 98.03 CP A97G, A107-, A108T, A255G, G444A,
% Ab514G, T625A, T626A, T627-, T655C,
A716G, T735C,
-757T,-758G, -759T, -760A,
T800G, T844G, 912-1000 highly variable
CONCLUSION GalAT and PGM. Our analysis also revealed

In this study, we tried to analyse the relationship
between promoter sequence features and gene
expression in  carbohydrate metabolism-related
genes. The abundance of TFBS and the presence of
CpG islands are two important aspects of gene
expression regulation. Our analysis and qPCR
expression study could show how these two aspects
are correlated to gene expression in SPS, PME,

abundantand sparse transcription factor binding sites
in 1 Kb promoter region of carbohydrate
metabolism-related genes. This study forms the basis
for developing tools that can predict the functional
TFBS from a large number of predicted TFBS on the
promoter sequences. However additional regulatory
pathways at post-transcriptional levels need to be
investigated through further experimentation to


https://www.ncbi.nlm.nih.gov/nucleotide/CP012614.1?report=genbank&log$=nucltop&blast_rank=4&RID=U80E73ZJ014
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understand
regulation.

the complete mechanism of gene
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