EVALUATION OF FIFTY WHEAT (TRITICUM AESTIVUM L.) GENOTYPES USING CHLOROPHYLL INDEX CANOPY TEMPERATURE DEPRESSION AND SPOT BLOTCHUNDER TERAI AGROCLIMATIC CONDITIONS OF WEST BENGAL

Sourik Poddar¹*, Saikat Das² and Rupsanatan Mandal³

1-3 Dept. of Genetics and Plant Breeding, Uttar Banga Krishi Vishwavidyalaya, Pundibari, Cooch Behar, West Bengal (735 165), India
Email: poddarsourik 1997@gmail.com

Received-06.12.2022, Revised-17.12.2022, Accepted-27.12.2022

Abstract: During the *rabi* season of 2020-2021, the experiment was conducted at the university instructional farm, Uttar Banga Krishi Vishwavidyalaya, Pundibari, Cooch Behar, West Bengal, to evaluate 50 wheat genotypes for chlorophyll index, canopy temperature depression, and spot blotch in the terai regions of West Bengal, as part of the 19th High-Temperature Wheat Yield Trail nursery from CIMMYT. Two-way ANOVA analysis revealed significant divergence in growth stages in all three cases. Six genotypes showed high chlorophyll efficiency at maturity whereas thirteen genotypes showed higher physiological efficiency in the present environment. Among them, only ENTRY 8 and 28 showed both and are recommended for future drought tolerance breeding. No genotype was found to be resistant to spot blotch, thus none is recommended for disease resistance breeding. According to a correlation study, when the area under chlorophyll index progress curve value rises, biomass rises, canopy temperature declines, and physiological efficiency rises. Furthermore, high chlorophyll index levels are linked to increased disease severity.

Keywords: Chlorophyll index, Canopy temperature depression, Spot blotch, Disease severity, Wheat

INTRODUCTION

heat was the second most important staple crop in India, behind rice, with a higher genetic variety in nearly all countries (Thakur *et al.*, 2018, Soumitra *et al.*, 2016).CIMMYT divides the globe's numerous wheat-producing zones into multiple mega-settings, and advanced breeding lines are dispersed to a range of circumstances across the world, with a focus on genotype evaluation for increased flexibility and selection for specific situations (Rajaram *et al.*, 1995, Braun *et al.*, 2010).Every year, the High-Temperature Wheat Yield Trial (HTWYT) nursery delivers improved breeding lines for heat-stressed locations to internal collaborators.

Previous research has shown that the role of morphophysiological factors in wheat adaptation is dependent on the severity of drought stress (Chahbar and Belkhodja, 2016). Because canopy temperature depression (CTD) and chlorophyll content are associated with a variety of adaptive physiological parameters, they aid breeders in determining wheat yield stability (Saxena et al., 2014, Shefazadeh et al., 2012). Stomatal conductance (Reynolds et al., 2005), transpiration rate (Gautam et al., 2015, Davies et al., 2005), water use (Reynolds et al., 2005), leaf area index (Othmani et al., 2015), root characteristics (Man et al., 2016), and grain yield (Olivares-Villegas et al., 2007) are all positively associated with CTD. Photoinhibition, high membrane thermo-stability, and water use are all favorably associated with chlorophyll content (Fotovat et al., 2007). Furthermore, chlorophyll content is regarded as a

valid indication of water use efficiency (WUE) and drought stress response in wheat (Fotovat *et al.*, 2007). As a result, developing wheat cultivars that can more efficiently use available water and withstand drought is a primary priority for enhancing wheat production in water-stressed regions, and nations should implement policies that allocate water to adapt to climate change (Daxit *et al.*, 2018, Condon *et al.*, 2002, Kirigwi *et al.*, 2004, Saadi *et al.*, 2015).

West Bengal isn't known for its wheat production, because rice-wheat is the most common crop, it is subjected to a variety of biotic and abiotic stressors. As a result of the late harvest of paddy, terminal heat stress is a serious worry (Dubey et al., 2020). After February, the temperature begins to climb, which has a negative impact on the crop. Disease incidence is also elevated due to the presence of excessive humidity (Gupta et al., 2018). Bipolaris sorokiniana (Sacc.) Shoem's spot blotch or foliar blight disease is one of the most deadly diseases discovered in this area (Chowdhury et al., 2013). In susceptible genotypes, this is a dangerous disease that causes little dark brown lesions on the leaf that quickly congeal and spread. The eastern Gangetic plains of South Asia, which include India, Nepal, and Bangladesh, are the most severely affected (Sharma and Duveiller, 2006, Sharma et al., 2007). In India, average yield losses due to spot blotch have been estimated to be 15.5 percent (Dubin and Van Ginkel, 1991) and 17% (Saari, 1998), with grain yield losses ranging from 17.63 percent to 20% under favorable conditions (Goel et al., 2006). However, in the event of a severe infestation, yield loss might exceed 80%.

*Corresponding Author

(Joshi *et al.*, 2007). The Terai region of West Bengal is known for its high humidity and short winter season, making it a hotspot for spot blotch (Kumar *et al.*, 2016).

The objective of the present study was to see the effect of chlorophyll content, canopy temperature depression, and spot blotch on 50 wheat genotypes in different growth stages in the terai agroclimatic conditions of West Bengal.

MATERIALS AND METHODS

The experimental material (19 HTWYT nursery) has 50 genotypes, one of which is a check (Table 1). During the *rabi* season of 2020-2021, the research was conducted at the university instructional farm, Uttar Banga Krishi Vishwavidyalaya, Pundibari, Cooch Behar, West Bengal. The farm is 43 m above sea level and is located at $26^{\circ}19'86''$ N latitude, and $89^{\circ}23'53''$ E longitude. The genotypes were planted and harvested on time using a Randomised Complete Block Design with a plot size of $2.5 \text{ m} \times 1 \text{ m}$ (6 rows plot⁻¹), and a row to row spacing of 20 cm. To grow a productive harvest, the appropriate cultural practices were followed.

Study of physiological traits Chlorophyllindex

A Field Scout CM 1000 chlorophyll metre was used to measure the Chlorophyll index at four different crop growth stages: 88 DAS, 95 DAS, 102 DAS, and 109 DAS. Using the laser guide lights, the metre was directed at target row segments, and the value obtained was displayed quickly. Between the hours of 10 a.m. and 2 p.m., readings were taken with the sun behind the reader and the ambient light receiver unobscured. The CM 1000 metre measurements were taken 3 to 5 feet from the wheat canopy surface at 45° or 90° angles. The chlorophyll index value is only calculated if the ambient light intensity is more than one on a scale of 1-9. The measurements are collected in a circular area of roughly 13-35 square inches (at 3-5 feet from the canopy), which is densely covered in plants and leaves. The following formula was derived from Rosyara et al., (2007) to

determine the Area Under Chlorophyll Index Progress Curve (AUCIPC).

Progress Curve (AUCIPC).
AUCIPC =
$$\sum_{i=1}^{n-1} 1/2$$
 (Si + 1 + Si) d ...(1)

Where, S_i = Chlorophyll index value at the end of time 'i', S_{i+1} = Chlorophyll index value at the end of time 'i+l', d = Day's interval between two observations, n = number of times of recording the value. Mean AUCIPC was calculated further.

Canopy temperature depression

An AR20 (Intell smart) infrared thermometer was used to measure the canopy temperature twice, at 68 DAS and 93 DAS. The same infrared thermometer was used to get the air temperature by focusing it on a blank sheet (white paper) positioned slightly above each plot before recording the canopy temperature. By subtracting the canopy temperature from the air temperature, the Canopy Temperature Depression (CTD) was computed (Balota *et al.*, 2008).

Study of spot blotch disease

In this study, spot blotch (*Bipolaris sorokiniana*) (Sacc) Shoem was scored using the Double-Digit scale (Saari and Prescott, 1975, Eyal *et al.*, 1987) at four crop growth stages: 88 DAS, 95 DAS, 102 DAS, and 109 DAS. The first digit (D_1) represents disease progression from ground level to canopy height, while the second (D_2) represents disease severity as measured by diseased leaf area. On a scale of 1-9, D_1 and D_2 are both rated. The proportion of disease severity is calculated for each score using the formula:

Severity (%) = $(D_1/9) \times (D_2/9) \times 100 \dots (2)$ Area Under Disease Progress Curve (AUDPC) was calculated by using the formula given by Wilcoxson *et al.* (1975)

$$AUDPC = \sum_{i=1}^{n-1} 1/2 (X_i + 1 + X_i) d ...(3)$$

Where, X_{i+1} = Disease severity on 'i+1'th day, X_i = Disease severity on 'i'th day, d = Day's interval between two observations, n= number of dates on which the disease was recorded. Mean AUDPC was further determined. Genotypes were classified as per AUDPC values suggested by Liatukas and Ruzgas, 2012. The AUDPC scale is as follows:

AUDPC value	Type of resistance
< 100.0	Resistant (R)
100.1-150.00	Moderately Resistant (MR)
150.1-200.00	MR-MS
200.1-250.00	Moderately susceptible (MS)
250.1-300.00	MS-S
300.1-350.00	S
350.1-400.00	S-HS
> 400.00	Highly susceptible (HS)

Table 1. List of wheat genotypes evaluated in 2020-2021

	1. Last of wheat g	enotypes evaluated in 2020-2021
S. N	Genotype	Pedigree
		DBW 187 (LOCAL
1	ENTRY 1	CHECK)NA C/TH.AC//3*PVN/3/MIRLO/BUC/4/2*PASTOR/5/KA CHU/6/KACH
1	ENIKI I	U
2	ENTRY 2	NADI#1
3	ENTRY 3	WBLL1*2/BRAMBLING/4/BABAX/LR42//BABAX*2/3/SHAMA*2/5/
4	ENTRY 4	QUAIU#1/SUP152
5	ENTRY 5	PBW343*2/KUKUNA/3/PASTOR//CHIL/PRL/4/GRACK/5/MUU/
6	ENTRY 6	CHIBIA//PRLII/CM65531/3/FISCAL*2/4/TAM200/TURACO/5/
7	ENTRY 7	WBLL1*2/BRAMBLING*2//BAVIS/3/CHYAK1/VILLA JUAREZ F2009/
8	ENTRY 8	KACHU//WBLL1*2/BRAMBLING*2/6/BECARD#1/5/KIRITATI/4/
9	ENTRY 9	SUP152/BAL#1*2/3/KINGBIRD#1//INQALAB 91*2/TUKURU
10	ENTRY 10	SUP152/BAL#1*2/3/KINGBIRD#1//INQALAB 91*2/TUKURU
11	ENTRY 11	SUP152/BAL#1*2/3/KINGBIRD#1//INQALAB 91*2/TUKURU
12	ENTRY 12	SUP152/BAL#1*2/3/KINGBIRD#1//INQALAB 91*2/TUKURU
13	ENTRY 13	SUP152/BAL#1*2/3/KINGBIRD#1//INQALAB 91*2/TUKURU
14	ENTRY 14	TUKUU//BA V92/RA YON/3/FRNCLN/4/2*FRNCLN*2/TECUE#1
15	ENTRY 15	ABLEU*2/BORL14
16	ENTRY 16	MILAN/KAUZ//BABAX/3/BAV92/4/WHEAR//2*PRL/2*PASTOR/5/
17	ENTRY 17	KENYA SUNBIRD/2*KACHU//KFA/2*KACHU
18	ENTRY 18	BAVIS/NAVJ07//SUP152/BAJ#1
19	ENTRY 19	CHIPAK*2//SUP152/KENYA SUNBIRD
20	ENTRY 20	WBLL1*2/CHAPIO/6/CNDO/R143//ENTE/MEX175/3/AE.SQ/4/
21	ENTRY 21	HEILO//MILAN/MUNIA/3/KIRITAII/2*TRCH/4/2*KACHU/KIRITATI
22	ENTRY 22	CHIBIA//PRLII/CM 6553 1/3/FISCA L*2/2/TAM200/TURA CO/5/
23	ENTRY 23	WBLL1*2/BRAMBLING*2//BAVIS*2/4/SWSR22T.B.//
24	ENTRY 24	BECARD/FRNCLN//BORL14
25	ENTRY 25	TACUPETO F2001*2/KIRITATI//BLOUK#1/3/WBLL1*2/
26	ENTRY 26	QUAIU#1/BECARD/3/WBLL1*2/BRAMBLING*2//BAVIS
27	ENTRY 27	BORL14*2/8/REH/HARE//2*BCN/3/CROC 1/AE.SQUARROSA (213)/
28	ENTRY 28	BORL14*2/8/REH/HARE//2*BCN/3/CROC 1/AE.SQUARROSA (213)/
29	ENTRY 29	SWSR22T.B./2*BLOUK#1//WBLL*2/KURUKU/3/BORL14/4/
30	ENTRY 30	ELVIRA/5/CNDO/R143//ENTE/MEX175/3/AE.SQ/4/2* OCI/6/VEE/
31	ENTRY 31	BOKOTA/3/ND643/2*WBLL1//2*BAJ#1
32	ENTRY 32	SUP152/BAJ#1/3/SWSR22T.B./2*BLOUK#1//WBLL1*2/KURUKU
33	ENTRY 33	MUTUS//ND643/2*WBLL1/3/BORL14
34	ENTRY 34	SHA7//PRL/VEE#6/3/FASAN/4/HAAS8446/2*FASAN/5/CBRD/KAUZ/
35	ENTRY 35	KACHU/SAUAL//PRL/3/KACHU/KIRITATI
36	ENTRY 36	ROLF07//LALBMONO1*4/PVN/3/BORL14
37	ENTRY 37	NADI*2/3/EBW10 TALL#1/WESTONIA-Rht5//NAVJ07
38	ENTRY 38	SUP152/BAJ#1*2/4/WHEA R/VIVITSI//WHEA R/3/PA NDORA
39	ENTRY 39	BECARD/FRNCLN//2*BORL14
40	ENTRY 40	BECARD/FRNCLN//KACHU/KIRITATI/3/BOKOTA
41	ENTRY 41	ATTILA/3*BCN//BAV92/3/PASTOR/4/TACUPETO F2001*2/
42	ENTRY 42	MUNAL*2/WESTONIA/3/WBLL1*2/BRAMBLING*2//BAVIS/4/
43	ENTRY 43	ROLF07*2/SHORTENED SR26 TRANSLOCATION//MUNAL#1/3/
44	ENTRY 44	MUTUS*2//TAM200/TURACO*2/3/KFA/2*KACHU
45	ENTRY 45	MUTUS*2//TAM200/TURACO*2/3/KFA/2*KACHU
46	ENTRY 46	MUTUS*2/HARIL#1*2/3/SWSR22T.B./2*BLOUK#1//WBLL1*2/
47	ENTRY 47	PASTOR//HXL7573/2*BAU/3/WBLL1/4/SOKOLL/3/PASTOR//
48	ENTRY 48	ISENGRAIN/KBIRD//MUNAL#1*2/3/KFA/2*KACHU
49	ENTRY 49	CROC 1/AE.SQUARROSA (205) //BORL95/3/PRL/SARA//TSI/
50	ENTRY 50	CROC 1/AE.SQUARROSA (205) //BORL95/3/PRL/SARA//TSI/

RESULTS AND DISCUSSION

Study on physiological characters Chlorophyll index

At four different crop growth stages, the Chlorophyll index tests revealed substantial differences across genotypes and growth phases. The genotype x growth stage interaction, on the other hand, was

determined to be non-significant (Table 2). With the progression of development phases, the mean value of CI revealed a progressive drop in chlorophyll index (Table 3). This might be related to the progressive loss of chlorophyll pigmentation as the crop matures. However, among the 50 genotypes studied, the rate of decline in CI value was shown to be significantly varied.

Table 2. Two-way Analysis of variance of chlorophyll Index under different growth stages

Source of variation	df	Mean sum of square
Genotype	49	1629.00*
Growth stage	3	112427.00***
Genotype x Growth stage	147	962.00
Error	199	1016.00

p < 0.05 and p < 0.001

Table 3. Two-way mean table for chlorophyll Index under different growth stages

GENOT YPE	88 DAS	95 DAS	102 DAS	109 DAS
1	181.900	218.800	192.300	155.400
2	171.100	182.500	158.600	104.900
3	166.800	199.100	150.500	86.200
4	178.600	195.000	135.100	99.700
5	134.300	144.900	132.300	94.400
6	181.200	169.300	131.200	82.300
7	161.900	162.700	142.200	102.800
8	207.800	182.900	169.000	113.800
9	193.900	171.300	158.900	114.000
10	234.800	169.100	127.600	91.200
11	199.500	178.500	160.200	104.400
12	178.700	171.700	159.700	94.900
13	176.000	158.700	126.400	86.100
14	192.800	170.200	154.200	126.800
15	187.700	150.200	151.800	99.400
16	166.100	197.900	153.500	92.500
17	216.900	152.700	165.000	104.200
18	164.300	145.500	146.500	105.200
19	206.700	199.400	156.900	92.800
20	182.700	163.100	148.700	93.100
21	214.400	156.500	162.000	116.100
22	146.900	146.400	137.600	102.100
23	159.100	174.600	147.500	98.400
24	171.400	176.900	121.600	85.100
25	165.200	135.700	137.900	108.500
26	171.500	168.500	170.500	108.000
27	165.400	209.800	153.400	177.800
28	202.400	169.600	202.700	133.300
29	188.600	205.700	168.000	120.400
30	168.800	149.300	143.300	108.000
31	151.900	148.200	130.100	88.600
32	205.200	168.200	148.400	98.300
33	159.400	145.500	161.300	95.000
34	183.400	163.400	147.200	104.000

35	188.500	183.000	144.300	87.700
36	199.200	146.800	194.600	122.100
37	151.500	125.500	132.000	95.800
38	161.700	178.900	130.400	88.800
39	169.100	165.800	178.700	121.800
40	176.300	163.100	143.600	86.700
41	154.600	152.000	139.100	117.500
42	162.900	149.800	128.100	108.900
43	220.400	170.500	148.800	81.300
44	165.000	149.000	165.200	97.700
45	174.500	146.900	136.800	96.400
46	160.900	150.300	163.400	95.900
47	145.300	155.300	126.900	92.800
48	159.300	146.200	121.000	79.600
49	162.600	150.800	122.200	94.800
50	170.000	178.200	127.000	87.600
Mean	177.182	166.278	149.084	102.862

ENTRY 10 (234.800) represents the greatest CI value in the first growth stage, whereas ENTRY 5 (134.300) represents the minimum value. ENTRY 1 (218.800) shows the highest value in the second growth stage, while ENTRY 37 (125.5) shows the lowest. ENTRY 28 (202.700) has the highest value in the third development stage, while ENTRY 48 (121) shows the lowest value. ENTRY 27 (177.800) shows the greatest value while ENTRY 48 (79.6) shows the minimum value in the fourth development stage.

Area Under Chlorophyll Index Progress Curve (AUCIPC) was calculated using Rosyara *et al.*,

(2007) technique to assess the pace of reduction in CI value. Genotype ENTRY 1 (2828.75) provided the highest AUCIPC value, whereas genotype ENTRY 37 (1,867.57) produced the lowest (Table 4). A high AUCIPC suggests that more chlorophyll is retained at maturity. Consequently, genotypes like ENTRY 1, 8, 19, 27, 28, and 29 have excellent chlorophyll efficiency at maturity. Rosyara *et al.*, (2010) reported a similar result when chlorophyll content was assessed using SPAD reading and the AUSDC (Area Under SPAD Decline Curve) value was found to be significantly different across genotypes following anthesis.

Table 4. AUCIPC values pertaining to different genotypes under-study

Genotype	AUCIPC 1	AUCIPC 2	AUCIPC 3	Mean AUCIPC
1	3,806.65	3,288.80	1,390.80	2,828.75
2	3,359.20	2,728.80	1,054.00	2,380.67
3	3,476.05	2,796.80	946.8	2,406.55
4	3,549.20	2,640.80	939.2	2,376.40
5	2,652.40	2,217.60	906.8	1,925.60
6	3,329.75	2,404.00	854	2,195.92
7	3,083.70	2,439.20	980	2,167.64
8	3,711.65	2,815.20	1,131.20	2,552.68
9	3,469.40	2,641.60	1,091.60	2,400.87
10	3,837.05	2,373.60	875.2	2,361.95
11	3,591.00	2,709.60	1,058.40	2,453.00
12	3,328.80	2,651.20	1,018.40	2,332.80
13	3,179.65	2,280.80	850	2,103.49
14	3,448.50	2,595.20	1,124.00	2,389.24
15	3,210.05	2,416.00	1,004.80	2,210.28
16	3,458.00	2,811.20	984	2,417.74
17	3,511.20	2,541.60	1,076.80	2,376.54
18	2,943.10	2,336.00	1,006.80	2,095.30
19	3,857.95	2,850.40	998.8	2,569.05
20	3,285.10	2,494.40	967.2	2,248.90
21	3,523.55	2,548.00	1,112.40	2,394.65
22	2,786.35	2,272.00	958.8	2,005.72
23	3,170.15	2,576.80	983.6	2,243.52
24	3,308.85	2,388.00	826.8	2,174.55

25	2,858.55	2,188.80	985.6	2,010.98
26	3,230.00	2,712.00	1,114.00	2,352.00
27	3,564.40	2,905.60	1,324.80	2,598.27
28	3,534.00	2,978.40	1,344.00	2,618.80
29	3,745.85	2,989.60	1,153.60	2,629.68
30	3,021.95	2,340.80	1,005.20	2,122.65
31	2,850.95	2,226.40	874.8	1,984.05
32	3,547.30	2,532.80	986.8	2,355.64
33	2,896.55	2,454.40	1,025.20	2,125.38
34	3,294.60	2,484.80	1,004.80	2,261.40
35	3,529.25	2,618.40	928	2,358.55
36	3,287.00	2,731.20	1,266.80	2,428.34
37	2,631.50	2,060.00	911.2	1,867.57
38	3,235.70	2,474.40	876.8	2,195.64
39	3,181.55	2,756.00	1,202.00	2,379.85
40	3,224.30	2,453.60	921.2	2,199.70
41	2,912.70	2,328.80	1,026.40	2,089.30
42	2,970.65	2,223.20	948	2,047.28
43	3,713.55	2,554.40	920.4	2,396.12
44	2,983.00	2,513.60	1,051.60	2,182.73
45	3,053.30	2,269.60	932.8	2,085.24
46	2,956.40	2,509.60	1,037.20	2,167.73
47	2,855.70	2,257.60	878.8	1,997.37
48	2,902.25	2,137.60	802.4	1,947.42
49	2,977.30	2,184.00	868	2,009.77
50	3,307.90	2,441.60	858.4	2,202.63
SE(m)	382.2	338.3	101.5	245.4
L.S.D. (0.05)	1086.2	961.4	288.3	697.3

Canopy temperature depression

Canopy Temperature Depression was tested at two distinct development phases and found to be significantly different. Genotypes and genotype x growth stage interactions, on the other hand, were found to be non-significant (Table 5). The mean CTD values (Table 6) showed a steady drop in CTD as growth stages progressed in most genotypes, with the exception of 13 genotypes (ENTRY 5, 8, 14, 18, 20, 21, 24, 28, 34, 35, 46, 48, and 49), where CTD rose as growth stages progressed. This revealed that these genotypes had high physiological efficiency in

the current environment.CTD values for several genotypes, such as ENTRY 1, 2, 6, 10, 15, 17, 22, 37, 39, 41, 42, 43, and 45, even became negative later on. In both development phases, one genotype (ENTRY 39) exhibited negative results (-0.050 in 68 DAS and -0.270 in 93 DAS). This might be due to a high canopy temperature caused by a lack of water in the plant or a lack of physiological efficiency. Earlier researchers, such as Guendouz *et al.*, (2012) reported similar results using 10 durum wheat types to indicate CTD as a drought tolerance indicator in semi-arid settings.

Table 5. Two-way Analysis of variance of canopy temperature depression under different growth stages

Source of variation	df	Mean sum of square
Genotype	49	1.064
Growth stage	1	20.840***
Genotype x Growth stage	49	0.929
Error	199	1.140

***p<0.001

Table 6. Two-way mean table for canopy temperature depression under different growth stages

GENOT YPE	68 DAS	93 DAS
1	1.860	-0.220
2	1.750	-0.120
3	1.140	0.600

4	0.800	0.440
5	0.350	1.020
6	2.070	-0.130
7	1.060	0.810
8	0.680	2.480
9	2.080	0.130
10	1.680	-0.700
11	2.050	0.600
12	0.640	0.140
13	1.830	0.360
14	1.170	1.370
15	2.050	-0.120
16	1.160	0.640
17	0.660	-0.330
18	1.170	1.650
19	1.540	0.230
20	0.640	0.900
21	0.920	1.060
22	1.710	-0.660
23	1.350	0.630
24	0.720	1.480
25	1.130	0.830
26	2.320	1.840
27	2.450	1.530
28	1.550	1.910
29	1.760	0.330
30	1.160	0.770
31	1.270	0.170
32	0.730	0.520
33	0.790	0.060
34	0.940	1.570
35	1.040	1.700
36	1.450	0.950
37	0.840	-0.320
38	1.600	0.300
39	-0.050	-0.270
40	1.030	0.080
41	0.830	-0.860
42	0.620	-1.370
43	0.900	-0.610
44	0.580	0.570
45	0.000	-0.310
46	0.120	0.660
47	1.340	0.980
48	0.170	0.540
49	0.190	0.510
50	1.160	0.380
Mean	1.140	0.494

Study on Spot blotch resistance

Spot blotch (*Bipolaris sorokiniana* (Sacc.) Shoem) scoring was done at four crop growth stages. The effects of genotype and development stages on disease severity % were shown to be very significant using analysis of variance (Table 7). There was no evidence of a significant interaction between

genotype and development stages. The mean severity values across distinct development phases showed a progressive rise in severity as the growth stages progressed (Table 8). This is seen in spot blotch resistance, where the disease progresses fast as the crop matures, particularly in sensitive genotypes (Joshi *et al.*, 2007).

 Table 7. Two-way Analysis of variance of disease severity under different growth stages

Source of variation	df	Mean sum of square
Genotype	49	405.65***
Growth stage	3	85734.72***
Genotype x Growth stage	147	66.88
Error	199	61.81

^{****}p<0.001

Table 8. Two-way mean table for disease severity under different growth stages

2 25.185 42.963 72.901 9 3 36.790 41.049 69.877 8 4 35.123 42.469 67.901 9 5 29.630 44.938 67.099 9 6 28.704 42.160 81.790 9 7 34.753 38.025 62.531 9 8 19.691 33.704 77.284 9 9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.895 91.728 9 17 31.790 48.889 91.728	GENOT YPE	88 DAS	95 DAS	102 DAS	109 DAS
3 36.790 41.049 69.877 8 4 35.123 42.469 67.901 9 5 29.630 44.938 67.099 9 6 28.704 42.160 81.790 9 7 34.753 38.025 62.531 9 8 19.691 33.704 77.284 9 9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.4198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.8951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 <td>1</td> <td>19.753</td> <td>28.951</td> <td>50.556</td> <td>63.889</td>	1	19.753	28.951	50.556	63.889
4 35.123 42.469 67.901 9 5 29.630 44.938 67.099 9 6 28.704 42.160 81.790 9 7 34.753 38.025 62.531 9 8 19.691 33.704 77.284 9 9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 20 28.333 45.370 85.000		25.185	42.963	72.901	97.222
5 29,630 44,938 67,099 9 6 28,704 42,160 81,790 9 7 34,753 38,025 62,531 9 8 19,691 33,704 77,284 9 9 18,086 28,889 61,790 8 10 27,778 47,531 71,481 9 11 19,321 34,506 71,358 9 12 19,691 27,407 58,765 8 13 24,383 41,358 56,358 9 14 34,198 40,864 58,704 8 15 26,235 31,728 76,667 9 16 32,003 48,8951 73,889 9 17 31,790 48,889 91,728 9 18 34,877 42,840 63,210 9 20 28,333 45,370 85,000 9 21 25,988 24,074 60,432 <td></td> <td></td> <td>41.049</td> <td>69.877</td> <td>88.333</td>			41.049	69.877	88.333
6 28.704 42.160 81.790 9 7 34.753 38.025 62.531 9 8 19.691 33.704 77.284 9 9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 <td></td> <td></td> <td></td> <td></td> <td>95.556</td>					95.556
7 34.753 38.025 62.531 9 8 19.691 33.704 77.284 9 9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 </td <td></td> <td>29.630</td> <td>44.938</td> <td>67.099</td> <td>96.111</td>		29.630	44.938	67.099	96.111
8 19.691 33.704 77.284 9 9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 24 22.901 19.753 62.531<					96.667
9 18.086 28.889 61.790 8 10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531					95.000
10 27.778 47.531 71.481 9 11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.96	l l				94.444
11 19.321 34.506 71.358 9 12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.34					88.333
12 19.691 27.407 58.765 8 13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 28 22.222 32.037 70.86					92.778
13 24.383 41.358 56.358 9 14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.86	l l				93.889
14 34.198 40.864 58.704 8 15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.66					86.111
15 26.235 31.728 76.667 9 16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.33					94.444
16 32.003 48.951 73.889 9 17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.44	l l				87.778
17 31.790 48.889 91.728 9 18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.42					95.556
18 34.877 42.840 63.210 9 19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.33					92.222
19 32.099 47.531 85.494 9 20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.11	l l				93.889
20 28.333 45.370 85.000 9 21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.55	18			63.210	93.333
21 25.988 24.074 60.432 7 22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.61	19	32.099	47.531		96.667
22 35.494 54.444 83.889 9 23 26.235 35.309 71.605 9 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.11	20	28.333	45.370	85.000	97.222
23 26.235 35.309 71.605 9. 24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.6	21	25.988	24.074	60.432	77.222
24 22.901 19.753 62.531 8 25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.48	22	35.494	54.444	83.889	97.222
25 27.716 29.198 77.963 8 26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.00	23	26.235	35.309	71.605	95.556
26 38.642 41.605 77.346 9 27 26.914 39.383 71.667 9 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	24	22.901	19.753	62.531	88.889
27 26.914 39.383 71.667 9. 28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	25	27.716	29.198	77.963	88.889
28 22.222 32.037 70.864 8 29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	26	38.642	41.605	77.346	93.333
29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	27	26.914	39.383	71.667	94.444
29 21.296 28.148 51.667 7 30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	28	22.222	32.037	70.864	88.333
30 30.741 48.889 88.333 9 31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	29	21.296	28.148	51.667	78.333
31 30.309 56.790 79.444 9 32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	30				99.444
32 33.395 49.506 81.420 9 33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9	31				96.667
33 25.556 47.901 73.333 9 34 33.457 41.790 81.111 9 35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9					95.000
34 33.457 41.790 81.111 9. 35 40.247 57.284 95.556 9. 36 21.420 26.358 75.617 8. 37 36.728 48.148 91.111 9. 38 44.259 49.630 81.667 9. 39 19.938 30.617 56.481 7. 40 27.716 41.235 90.000 9.					97.222
35 40.247 57.284 95.556 9 36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9					95.556
36 21.420 26.358 75.617 8 37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9					99.444
37 36.728 48.148 91.111 9 38 44.259 49.630 81.667 9 39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9					85.000
38 44.259 49.630 81.667 9. 39 19.938 30.617 56.481 7. 40 27.716 41.235 90.000 9.					98.889
39 19.938 30.617 56.481 7 40 27.716 41.235 90.000 9					95.000
40 27.716 41.235 90.000 9					79.444
41 + 36728 + 43086 + 78704 + 9					98.333
	l l				93.333
					93.889 100.000

44	27.160	41.975	61.235	84.444
45	30.926	37.346	70.741	92.778
46	33.889	46.173	84.444	98.333
47	25.617	34.383	73.889	90.000
48	33.889	52.037	71.111	96.667
49	35.432	44.630	88.765	95.000
50	30.247	59.136	93.025	99.444
Mean	29.307	40.944	74.549	92.511

AUDPC values were determined for each genotype to determine disease progression and growth phases. The mean values of AUDPC are shown in Table 9. ENTRY 35 (341.36) represents the greatest value in AUDPC 1 values, whereas ENTRY 24 represents the minimum value (149.29). ENTRY 35 (534.94) has the highest value in AUDPC 2, while ENTRY 1 has the lowest (278.27). ENTRY 43 (696.11) in AUDPC 3 displays the greatest value, whereas ENTRY 1 displays the minimum (400.555). The greatest value in the Mean AUDPC values is represented by

ENTRY 35 (519.595), while the smallest value is given by ENTRTY 1 (283.095). There were 29 highly susceptible (HS) genotypes, 14 susceptible to highly susceptible (S-HS) genotypes, and 06 susceptible genotypes (S). Only one genotype, ENTRY 1, was moderately susceptible to susceptible (MS-S), and that genotype was a local check variety, DBW 187. It showed that all of the germplasm in the nursery was classified as either highly susceptible or susceptible. As a result, no genotype could be chosen in terms of disease resistance.

Table 9. AUDPC values pertaining to different genotypes under study

Genotype	AUDPC 1	AUDPC 2	AUDPC 3	Mean AUDPC	Resistance category
1	170.465	278.270	400.555	283.095	MS-S
2	238.515	405.525	595.430	413.160	HS
3	272.440	388.240	553.735	404.805	HS
4	271.575	386.300	572.100	409.990	HS
5	260.985	392.130	571.235	408.115	HS
6	248.025	433.825	624.595	435.485	HS
7	254.720	351.945	551.355	386.010	S-HS
8	186.885	388.455	601.050	392.130	S-HS
9	164.415	317.380	525.430	335.740	S
10	263.580	416.545	574.905	418.340	HS
11	188.395	370.525	578.360	379.095	S-HS
12	164.845	301.605	507.065	324.510	S
13	230.090	342.005	527.810	366.635	S-HS
14	262.715	348.485	512.685	374.630	S-HS
15	202.870	379.380	602.780	395.010	S-HS
16	283.335	429.940	581.390	431.555	HS
17	282.375	492.160	649.660	474.735	HS
18	272.005	371.170	547.905	397.025	S-HS
19	278.705	465.585	637.560	460.615	HS
20	257.965	456.295	637.780	450.680	HS
21	175.215	295.770	481.790	317.590	S
22	314.785	484.170	633.890	477.615	HS
23	215.405	374.200	585.060	391.555	S-HS

24	149.290	287.995	529.970	322.415	S
25	199.195	375.060	583.985	386.080	S-HS
26	280.865	416.330	597.375	431.525	HS
27	232.035	388.670	581.385	400.700	HS
28	189.905	360.155	557.190	369.085	S-HS
29	173.055	279.350	455.000	302.470	S
30	278.700	480.275	657.220	472.065	HS
31	304.845	476.820	616.390	466.020	HS
32	290.155	458.240	617.465	455.290	HS
33	257.095	424.320	596.945	426.120	HS
34	263.365	430.150	618.335	437.285	HS
35	341.360	534.940	682.500	519.595	HS
36	167.220	356.915	562.160	362.100	S-HS
37	297.070	487.405	665.000	483.155	HS
38	328.610	459.535	618.335	468.830	HS
39	176.945	304.850	475.740	319.175	S
40	241.325	459.320	659.170	453.270	HS
41	279.350	426.265	602.130	435.915	HS
42	278.705	427.130	609.475	438.440	HS
43	239.600	501.665	696.110	479.125	HS
44	241.975	361.235	509.875	371.030	S-HS
45	238.950	378.300	572.315	396.525	S-HS
46	280.215	457.160	639.720	459.035	HS
47	210.000	378.950	573.610	387.520	S-HS
48	300.740	431.020	587.225	439.660	HS
49	280.215	466.885	643.180	463.425	HS
50	312.840	532.565	673.645	506.345	HS
S.Em (±)	26.634	38.896	35.310	29.865	
L.S.D. (0.05)	75.693	110.541	100.349	84.871	

Correlation analysis

Correlation analysis in Table 10 showed, CTD, BY, and GY were all positively correlated with AUCIPC. CTD also had a positive relationship with AUCIPC and BY. This meant that when the AUCIPC value climbed, the genotypes' biomass increased as well, and canopy temperature reduced as a result of the high physiological efficiency. Khakwani *et al.*, 2012 and Al-Ghzawi *et al.*, 2018 reported similar results in

wheat. AUDPC was shown to have a positive relationship with HI, but was found to have a negative relationship with AUCIPC and BY. This meant that a high chlorophyll index value was associated with a higher disease severity. This might be attributed to the loss of greenness that occurs during periods of significant disease infestation. Rosyara *et al.*, 2007, Rosyara *et al.*, 2010, obtained similar results.

BY TGW GY Ш Traits AUCIPC CTD AUDPC AUCIPC CTD 0.294 1 AUDPC -0.262 -0.021 1 TGW 0.04 -0.074 0.029 1 0.402 0.239 -0.382 -0.165 1 GY 0.217 0.144 -0.103 0.477 -0.1661 Ш -0.173 -0.09 0.202 0.053 -0.473 0.515

Table 10. Correlation matrix between 7 characters of wheat

*p<0.05,**p<0.01, \overline{AUCIPC} = Area Under Chlorophyll Index Progress Curve, CTD= Canopy Temperature Depression, AUDPC=Area Under Disease Progression Curve, TGW= 1000 Grain Weight (g), BM= Biological Yield (t^{-ha}), GY= Grain Yield (t^{-ha}), HI= Harvest Index

CONCLUSION

A substantial difference was found across growth stages for chlorophyll index, canopy temperature depression, and spot blotch in the genotypes. ENTRY 8 and 28 could be used for drought tolerance breeding as only they showed excellent chlorophyll efficiency at maturity and high physiological efficiency in the current environment. No genotypes used in the study could be recommended for disease resistance breeding. Correlation analysis concludes that as the AUCIPC value increases, biomass increases, canopy temperature falls resulting in high physiological efficiency. Moreover, high chlorophyll index values are associated with high disease severity.

Funding details

The research was conducted with the kinds and supports from CIMMYT and Uttar Banga Krishi Vishwavidyalaya.

ACKNOWLEDGEMENT

The author would like to acknowledge CIMMYT for providing the genotypes, UBKV for providing all the requirements for conducting the research work successfully. The author would like to acknowledge the guidance provided by Dr. S. Das and Dr. R. Mandal for carrying out the research work.

Conflict of interest

The authors have declared no conflict of interests exist.

Data Availability Statement

Legal restrictions are imposed on the public sharing of raw data. However, authors have full right to transfer or share the data in raw form upon request subject to either meeting the conditions of the original consents and the original research study. Further, access of data needs to meet whether the user complies with the ethical and legal obligations as data controllers to allow for secondary use of the data outside of the original study.

REFERENCES

Al-Ghzawi, A.L.A., Khalaf, Y.B., Al-Ajlouni, Z.I., AL-Quraan, N.A., Musallam and I., Hani, N.B. (2018). The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (*Triticum aestivum* L. and *T. durum* Desf.) Varieties Grown in Dry Regions of Jordan. Agriculture 8, 67.

Google Scholar

Balota, M., Payne, W.A., Evett, S.R. and Peters, T.R. (2008). Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Science 48(5), 1897-1910.

Google Scholar

Braun, H.J., Atlin, G. and Payne, T. (2010). Multilocation testing a tool to identify plant response to global climatic change. Climatic change and crop production 1, 115-38.

Google Scholar

Chahbar, S. and Belkhodja, M. (2016). Water deficit effects on morpho-physiological parameters in durum wheat. Journal of fundamental and applied sciences 8, 1166–1181.

Google Scholar

Chowdhury, A.K., Singh, G., Tiyagi, B.S., Ojha, A., Dhar, T. and Bhattacharya, P.M. (2013). Spot blotch disease of wheat – a new thrust area for sustaining productivity. Journal of Wheat Research 5(2), 1-11.

Google Scholar

Condon, A.G., Richards, R.A., Rebetzke, G.J. and Farquhar, G.D. (2002). Improving intrinsic wateruse efficiency and crop yield. Crop Science 42, 122–131.

Google Scholar

Davies, K.F.P., Chesson, S., Harrison, B.D., Inouye, B., Melbourne, A. and Rice, K.J. (2005). Spatial heterogeneity explains the scale dependence of the native–exotic diversity relationship. Ecology 86, 1602–1610.

Google Scholar

Dixit, P., Telleria, R., Al Khatib, A.N. and Allouzi, S.F. (2018). Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Science of the Total Environment 610–611, 219–233.

Google Scholar

Dubey, R., Pathak, H., Chakrabarti, B., Singh, S., Gupta, D.K., Harit, R.C. (2020). Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems 181, 102826.

Google Scholar

Dubin, H.J. and Van Ginkel, M.V. (1991). The status of wheat disease and disease research in the warm areas. In: Sauders, D.A. (Ed.), Proceeding of the Wheat for the Non-traditional, Warm Areas Conference, 1990, Foz do Iguac, u, Brazil, Mexico, DF, Mexico, CIMMYT,125-145.

Google Scholar

Eyal, Z., Scharen, A.L., Prescott, J.M. and Ginkel, M.V. (1987). The septoria diseases of wheat: Concepts and methods of disease management. CIMMYT, Mexico, 52.

Google Scholar

Fotovat, R., Valizadeh, M. and Toorchi, M. (2007). Association between water-use-efficiency components and total chlorophyll content (SPAD) in wheat (*Triticum aestivum* L.) under wellwatered and drought stress conditions. Journal of Food Agriculture and Environment 5, 225–227.

Google Scholar

Gautam, A., Sai Prasad, S.V., Jajoo, A. and Ambati, D. (2015). Canopy temperature as a selection parameter for grain yield and its components in durum wheat under terminal heat stress in late sown conditions. Agricultural Research 4, 238–244.

Google Scholar

Goel, P., Swati, S.P., Srivastava, K. and Jaiswal, J.P. (2006). Assessment of losses by spot blotch (Bipolaris sorokiniana) with reference to resistance in wheat in Tarai region of Uttaranchal. Indian Phytopathology 59(1), 36-40.

Google Scholar

Guendouz, A., Maamri, K., Benidir, M. and Hafsi, M. (2012). Canopy Temperature Efficiency as Indicators for Drought Tolerance in Durum Wheat (*Triticum Durum*Desf.) in Semi-Arid Conditions. Journal of Agriculture and Sustainability. 1: 23-38.

Google Scholar

Gupta, P.K., Chand, R., Vasistha, N.K., Pandey, S.P., Kumar, U., Mishra, V.K. and Joshi, A.K. (2018). Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathology 67, 508–531.

Google Scholar

Joshi, A.K., Ortiz-Ferrara, G., Crossa, J., Singh, G., Sharma, R.C., Chand, R. and Parsad, R. (2007). Combining superior agronomic performance and terminal heat tolerance with resistance to spot

blotch (*Bipolaris sorokiniana*) of wheat in the warm humid Gangetic Plains of South Asia. Field crops research 103(1), 53-61.

Google Scholar

Khakwani, A., Dennett, M.D., Munir, M. and Abid, M. (2012). Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development. Pakistan Journal of Botany 44, 879–886.

Google Scholar

Kirigwi, F.M., Van Ginkel, M., Trethowa, R., Sears, R.G., Rajaram, S. and Paulsen, G.M. (2004). Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135, 361–371.

Google Scholar

Kumar, S., Archal, S., Tyagi, R.K., Kumar, J., Vikas, V.K., Jacob, S.R., Srinivasan, K., Rashamani, J., Parimalan, R., Sivaswamy, M. and Tyagi, S. (2016). Evaluation of 19,460 wheat accessions conserved in the Indian national gene bank to identify new sources of resistance to rust and spot blotch diseases. Plos one 11(12), e0167702.

Google Scholar

Liatukas, Z. and Ruzagas, V. (2012). Spot blotch resistance in derivatives of European winter wheat. Turkish Journal of Agriculture and Forestry 36(3):341-351.

Google Scholar

Man, J., Shi, Y., Yu, Z. and Zhang, Y. (2016). Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation. Plant Production Science 19, 193–205.

Google Scholar

Olivares-Villegas, J.J., Reynolds, M.P. and McDonald, G.K. (2007). Drought-adaptive attributes in the Seri Babaxhexaploid wheat population. Functional Plant Biology 34, 189–203.

Google Scholar

Othmani, A., Rezgui, M., Cherif, S., Mouelhi, M. and Melki, M. (2015). Effects of water regimes on root and shoot growth parameters and agronomic traits of Tunisian durum wheat (*Triticum durum*Desf.). Journal of new sciences Agriculture and Biotechnology 18, 695–702.

Google Scholar

Rajaram, S., Van Ginkel, M. and Fischer, R.A. (1995). CIMMYT's wheat breeding megaenvironment (ME). In: Proceedings of the 8th International Wheat Genetics Symposium, Jul. 19-24 1993. Beijing, China.

Google Scholar

Reynolds, M.P., Mujeeb-Kazi, A. and Sawkins, M. (2005). Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Annals of Applied Biology 146, 239–259.

Google Scholar

Rosyara, U.R., Duweiller, E, Pan, K. and Sharma, R.C. (2007). Variation in chlorophyll content,

anatomical traits and agronomic performance of wheat genotypes differing in spot blotch resistance under natural epiphytotic conditions. Australasian Plant Pathology 36(3), 245-251.

Google Scholar

Rosyara, U.R., Subedi, S., Duveiller, E. and Sharma, R.C. (2010). The effect of spot blotch and heat stress on variation of canopy temperature depression, chlorophyll fluorescence, and chlorophyll content of hexaploidy wheat genotypes. Euphytica 174(3): 377-390.

Google Scholar

Saadi, S., Todorovic, M., Tanasijevic, L., Pereira, L.S., Pizzigalli, C. and Lionello, P. (2015). Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agriculture Water Management 147, 103–115.

Google Scholar

Saari, EE (1998). Leaf blight disease and associated soil borne fungal pathogens of wheat in South and South East Asia. In: Duveiller, E., Dubin, H.J., Reeves, J., McNab, A. (Eds.), Proceeding of the Helminthosporium Blight of Wheat: Spot Blotch and Tan spot Workshop, 1997, El Bata'n, Mexico, Mexico, DF, Mexico, CIMMYT, 37-51.

Google Scholar

Saari, EE and Prescott, J.M. (1975). A scale for appraising the foliar intensity of wheat disease. Plant Disease Reporter 59, 377-380.

Google Scholar

Saxena, D.C., Sai Prasad, V., Chatrath, R., Mishra, S.C., Watt, M., Prashar, R., Wason, A., Gautam, A. and Malviya, P. (2014). Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian Journal of Plant Physiology 19, 43–47.

Google Scholar

Sharma, R.C. and Duveiller, E. (2006). Spot Blotch Continues to Cause Substantial Grain Yield Reductions under Resource-limited Farming Conditions. Journal of Phytopathology 154, 482-488.

Google Scholar

Sharma, R.C., Duwiller, E. and Ortiz-Ferrara, G. (2007). Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change already taking its toll? Field Crops Research 103, 109–118.

Google Scholar

Shefazadeh, M., Karimizadeh, R., Mohammadi, M. and Suq, H.S. (2012). Using flag leaf chlorophyll content and canopy temperature depression for determining drought-resistant durum wheat genotypes. Journal of Food, Agriculture and Environment 10, 509–515.

Google Scholar

Soumitra, M., Subhra, Mukhopadhyana, S.K. and Dash, A.P. (2016). Genetic variability, correlation and path analysis of bread wheat (*Triticum aestivum* L.) genotypes under terminal heat stress. International Journal of Bio-resource and Stress Management 7(6), 123 –1238.

Google Scholar

Thakur, P., Upadhyay, P., Rashmi, K., Namrata, Prasad, R., Chandra, K., Madhukar, K. and Prasad, L.C. (2018). Study of genetic variability path analysis and diversity of selected germplasm lines of wheat (*Triticum aestivum* L.) under very late sown condition. International Journal of Bio-resource and Stress Management 9(2), 203–208.

Google Scholar

Wilcoxson, R.D., Rasmusson, D.C. and Mives, M.R. (1975). Development of barley resistant to spot botch and genetics of resistance. Plant Disease 74, 201-210.

Google Scholar