

## GENETIC RESOURCES OF LEAFY VEGETABLES IN TELANGANA: DIVERSITY, DISTRIBUTION AND CONSERVATION

**S.R. Pandravada\***, **N. Sivaraj**, **M. Thirupathi Reddy<sup>1</sup>**, **V. Kamala**, **P. Pranusha**, **P. Saidaiah<sup>2</sup>**  
and **K. Anitha**

*ICAR-National Bureau of Plant Genetic Resources, Regional Station, Rajendranagar,  
Hyderabad-500 030, Telangana.*

<sup>1</sup>*Dr. Y.S.R. Horticultural University, Horticultural Research Station, Vijayarai-534 475,  
West Godavari District, Andhra Pradesh.*

<sup>2</sup>*Sri Konda Laxman Telangana State Horticultural University, College of Horticulture, Mojerla-509  
382, Wanaparthy District, Telangana.*

*Received-02.02.2022, Revised-17.02.2022, Accepted-24.02.2022*

**Abstract:** Green leafy vegetables are rich in nutrients and fibre and low in fat and calories and help complete a healthy balanced diet. The kind of plant species used as leafy vegetables varies from region and usually depend up on their distribution and traditional practices. In Telangana, leafy vegetables are cultivated in about 7,673 hectares area largely in the erstwhile districts of Ranga Reddy, Medak and Nalgonda with a production of 52,108 tonnes during 2019-20. The leafy vegetables for which considerable local variability occur are amaranths, bladder dock, curry leaf, drumstick, fenugreek, garden spinach, indian spinach, purslane, roselle, sorrel and spear mint. Information on diversity in leafy vegetable crops with different landrace names that occur/ cultivated and germplasm conserved from Telangana is also given. The scope and future perspective for sustaining leafy vegetable genetic resources is also discussed.

**Keywords:** Leafy vegetables, Telangana, Diversity, Conservation

### INTRODUCTION

Leafy vegetables are a rich source of nutrients and form a major crop group that has been designated as natures' anti-aging wonders' which are the cheapest and abundant source of antioxidants and vitamins as well. The number and kind of plant species used as leafy vegetables varies from region to region and usually depend up on their distribution, traditional practices and beliefs. They have several advantages such as having short duration, amenability to intensive cultivation, ready market and steady income to the farmers in general. The major leafy vegetables are primarily cultivated in the peri-urban areas having considerable market demand. Even though, they form an important source of dietary nutrients, these crops have not yet received the kind of attention they deserve *vis-à-vis* other vegetables such as tomato, potato and brinjal etc. in research and development. Insidiously, there is a significant decline in the number of major and minor green leafy vegetable species traditionally cultivated/ picked from wild for consumption.

### MATERIALS AND METHODS

Crop specific and multi-crop specific surveys were undertaken by the National Bureau of Plant Genetic Resources, Regional Station, Hyderabad to collect, salvage and conserve Agri-biodiversity including diversity in leafy vegetable crops from Telangana. The targeted area and tentative route were planned

and the materials required for exploration were also equipped following overall collection logistics as suggested by Arora (1981) and Bennett (1970). The sampling procedures for collection of germplasm was followed as suggested by Hawkes (1980) and Brown and Marshall (1995). The sampling, collection site and intervals depended on variation in environmental and edaphic factors and frequency of occurrence. The method followed in most of the cases had been random/ non-random selective sampling for cultivated species. Farmer's field was taken as a unit area and random samples of the populations and biased samples of elite material were collected (Pandravada *et al.*, 1996 and 2017). Germplasm samples were also collected from cultivated fields, threshing yards and farm stores as well. Standard passport information was recorded for all the collected accessions for 39 variables. Local elderly farmers were interacted with for documenting associated indigenous traditional and ethnobotanical knowledge. Garmin-12 model of global positioning system (GPS) was used to record the geographical coordinates of the collection sites. DIVA-Geographical information system (GIS) version 7.5 was used for Agri-biodiversity mapping and analyzing data to assess spatial distribution and variability in crop species. The germplasm collections were appropriately processed for medium/ long-term conservation and utilization in crop improvement programmes.

\*Corresponding Author

## RESULTS AND DISCUSSION

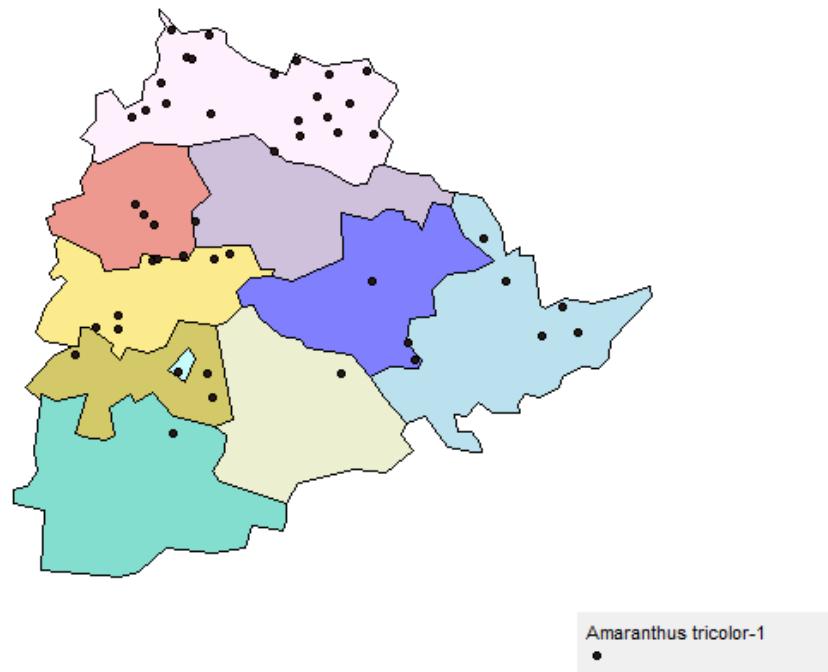
The explored area is mainly sub-humid and sub-tropical in nature, the average annual rainfall varied from 1,000 to 1,400 mm and the average annual temperature from 5° to 37°C. Black soils are frequently encountered and the range of soil types includes red loams, red sandy loams and red soil with clay base etc. Telangana had 7,673 hectares area under leafy vegetables with garden spinach, coriander, amaranths, fenugreek, Indian spinach, mesta/ roselle and curry leaf as the main crops with a total production of 52,108 tonnes during 2019-20. Leafy vegetables are grown to a large extent in the erstwhile districts of Ranga Reddy, Medak and Nalgonda in Telangana accounting for 74.9% of the total area with Ranga Reddy alone accounting for 54.5% under these crops in the state. The primary ethnic groups associated with *on-farm* conservation of leafy vegetable landraces are *Gond*, *Kolam*, *Koya* and *Lambada*. The important leafy vegetables for which considerable local variability occur are amaranths, bladder dock, curry leaf, drumstick, fenugreek, garden spinach, Indian spinach, purslane, roselle, sorrel and spear mint etc. in all the districts of Telangana. The diversity in leafy vegetable crops with different landrace names that occur/ cultivated in districts of Telangana is given in Table-1. The diversity and its distribution, important landraces that was under cultivation, phenotypic diversity for important morpho-agronomic/ descriptors and states, potential of germplasm and status of genetic erosion etc. with respect to Telangana are dealt with for important leafy vegetable crops as follows:

### **Amaranths**

*Amaranthus* L. is a genus in the family Amaranthaceae consisting of more than 60 species including that of leaf vegetable and grain species (Ray and Roy, 2009 and Shukla *et al.*, 2010). In Amaranths, types which are green, completely/ partially purple and spiny generally occur. In Telangana, the following six *Amaranthus* species which are edible generally occur.

*Amaranthus blitum* (L.) var. *oleracea* Duthie (Guernsey pigweed/ *Totakoora*)

*Amaranthus caudatus* L. (Pendent amaranth, tassel flower/ *Keikera*, *Netakoora*)


*Amaranthus cruentus* L. (Mexican grain amaranth, prince's feather/ *Totakoora*)

*Amaranthus spinosus* L. (Prickly amaranth/ *Mulla totakoora*)

*Amaranthus tricolor* L. (Edible amaranth/ *Tota koora*, *perugu totakoora*)

*Amaranthus viridis* L. (Green amaranth, wild amaranth/ *chilaka totakoora*)

Generally, *A. caudatus* and *A. tricolor* are popular and cultivated and the remaining species occur as wild and picked as uncultivated greens for consumption for nutritional security by the tribal groups/ farmers/ landless labour. Among the Amaranths, the named landraces that occur include *Bhaji koora*, *chakravarthi koora*, *doggali koora*, *erra totakoora*, *koya koora*, *kuppi koora*, *mulla doggali*, *mulla totakoora*, *pedda totakoora*, *perugu totakoora*, *puvvu totakoora*, *rajagiri koora*, *sirri koora*, *sirruaku* and *tella totakoora* etc. Amaranths have the third largest area under leafy vegetables in Telangana and is cultivated to a large extent in the erstwhile districts of Ranga Reddy, Adilabad and Medak. Atleast 49 accessions of Amaranths germplasm collections are made during crop specific/ multi-crop explorations undertaken in variability rich pockets of Telangana and the diversity mapping is depicted in Fig.1. Diversity is mainly distributed in Indravelly, Jainoor, Jannaram, Dehagaon, Gudihathnoor, Bela, Bejjur, Sirpur, Wankhidi and Kerameri in Adilabad district, Burgampahad in Khammam and Zaheerabad, Tandur, Kondapur and Siddipet in Medak district. The tribal group Koya is associated with the cultivation, patronage and consumption of Amaranths. Tremendous diversity occur for plant height (short/ medium tall/ tall/ very tall), plant growth habit (erect/ spreading/ drooping), stem colour (yellow/ orange/ green/ pink), stem thickness, stem surface (smooth/ ridged), leaf shape, leaf size, leaf colour (green/ dark green/ purple), markings on the leaves, inflorescence colour (yellow/ yellow-orange/ green/ purple), inflorescence compactness (lax/ intermediate/ dense), inflorescence shape (globose/ semi-drooping/ drooping/ straight), inflorescence spines (smooth/ glabrous/ prickly/ spiny), seed colour (white/ pink/ brown/ black/ golden), days to flowering and taste etc. The potential of Amaranths especially the grain types in the nutritional and livelihood sustainability of small holder farmers was highlighted.



**Fig. 1.** Diversity mapping for Amaranths and germplasm sampled in districts of Telangana.

#### **Coriander**

Coriander (*Coriandrum sativum* L.) belonging to family Apiaceae is one of the important leafy vegetables and its green leaf is extensively used in cooking. It has the second largest area under leafy vegetables in Telangana. It had 436 hectares area and 4,013 tonnes production during 2019-20 and is grown to a large extent in the erstwhile districts of Ranga Reddy, Nizamabad and Medak accounting for 81% of the total area with Ranga Reddy alone accounting for 42.2% under the crop in the state. The diversity rich pockets in Telangana are mainly concentrated in Bazarhathnur, Boath, Chennur, Kadem, Khanapur, Mudhole, Nirmal, Sirpur and Tanoor in Adilabad district, Nekkonda in Warangal, Gandhari and Armur in Nizamabad, Bheemdevarapalli in Karimnagar and Andole and Ramayampeta in Medak district. Atleast 33 accessions of Coriander germplasm collections are made during crop specific/ multi-crop explorations undertaken in diversity rich pockets of Telangana. The important landraces that occur include *Dhania* and *Koththimeera*. Coriander is sine qua non for garnishing, imparting aroma and taste etc. and variability exists for leaf shape and size, aroma, essential oil content and yield potential (Kalidasu *et al.*, 2015).

A coriander variety (Rajendranagar Kothimera-1) was developed from a germplasm accession IC512365 especially for leaf with good aroma through pure line breeding by Sri Konda Laxman Telangana State Horticultural University suitable for cultivation in Telangana with a yield potential up to 26.8 q/ha (Leaf).

#### **Curry leaf**

Curry leaf/ *Karivepaku* (*Murayya koenigii* (L.) Spreng.) is a tropical to sub-tropical tree native to Asia and belonging to family Rutaceae. Its aromatic leaves are extensively used in curries and other Indian dishes and also used as a medicine. In Telangana curry leaf is grown to a large extent in the erstwhile districts of Khammam, Medak and Nizamabad. Variability occurs for leaf shape and size, aroma, essential oils and yield potential.

#### **Fenugreek**

Fenugreek/ *Menthikoora* (*Trigonella foenum-graecum* L.) is an important leafy vegetable belonging to family Fabaceae. It is used in cooking, as a medicine, as an ingredient in spice blends and a flavouring agent in foods, beverages and tobacco. In Telangana, fenugreek is grown to a large extent in the erstwhile districts of Ranga Reddy, Karimnagar and Medak. Variability occurs for leaf shape and size, fibre ness, bitter principle and yield potential.

#### **Garden spinach**

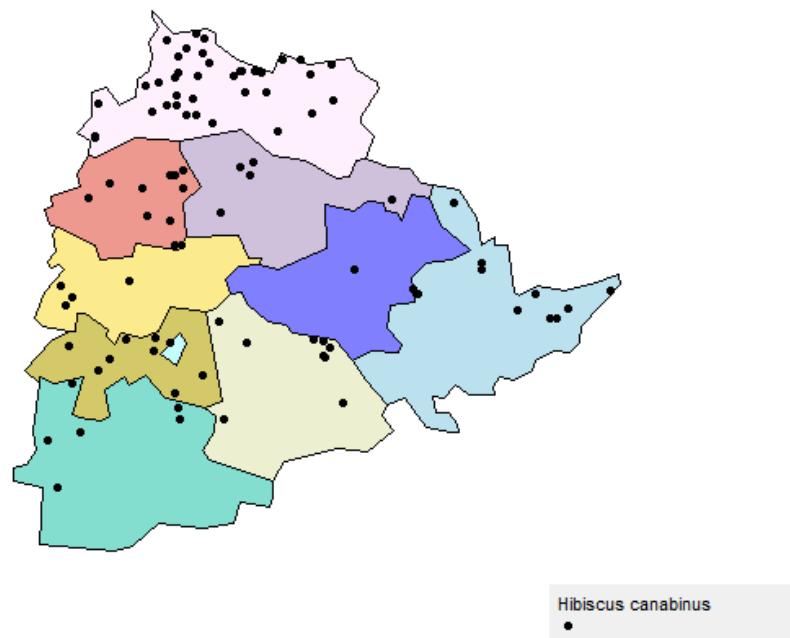
Garden spinach/ *Paalakoora, palak, dumpa bachhali* (*Spinacia oleracea* L.) is very popular having the largest area under leafy vegetables in Telangana. It is grown to a large extent in the erstwhile districts of Ranga Reddy, Medak and Nalgonda. Atleast 19 accessions of spinach germplasm collections are made during crop specific/ multi-crop explorations undertaken in diversity rich pockets of Telangana. Variability occurs for leaf shape and size and petiole length, pigmentation and yield potential.

#### **Indian spinach**

Indian spinach (*Basella alba* L.), which belongs to family Basellaceae, is a popular leafy vegetable

widely grown in Telangana. It is a perennial, either trailing or bushy, succulent with tender leaves. In Telangana, Indian spinach is grown to a large extent in the erstwhile districts of Ranga Reddy, Khammam, Warangal and Nalgonda. Atleast 19 accessions of Indian spinach germplasm collections are made during crop specific/ multi-crop explorations undertaken in diversity rich pockets of Telangana. Diversity is mainly distributed in Khammam, Nalgonda and Nizamabad districts of Telangana. In Indian spinach, the named landraces that occur include *Bachchali*, *erra bachchali*, *mayalu*, *nalla bachchali*, *pulla bachchali* and *tella bachchali* with Medak, Khammam, Nalgonda and Nizamabad being the important districts for landrace diversity. Variability occurs for leaf shape and size, pigmentation, taste (sour/ non-sour/ plain), yield potential and completely purple types (*Erra bachchali*) which are rich in anthocyanins also occur. Preliminary characterization and evaluation of Indian spinach germplasm for agro-economic and quality traits was taken up by Thirupathi Reddy *et al.* (2014 b). The climate suitability mapping for cultivation of Indian spinach in India was studied and worked out by Thirupathi Reddy *et al.* (2015 c) using MaxEnt modelling.

#### **Kenaf and Roselle**


Kenaf (*Hibiscus cannabinus* L.) and roselle (*Hibiscus sabdariffa* L.), which belong to family Malvaceae, are known by various names with the former as Ambari hemp, bimlipatnam jute, deccan hemp, kenaf and mesta/ *gogu*, *gongoora* and the later as Jamaica sorrel, red sorrel, roselle/ *Erra gogu*, *erra gongoora* etc. and are very popular green leafy vegetables across Telangana. It is grown to a large extent in the erstwhile districts of Ranga Reddy, Medak and Khammam.

In kenaf, the named landraces that occur include *Erra pundi*, *nalla pundi*, *pundi koora*, *tella pundi* with Medak being an important district for landrace diversity and in roselle they include *Ambadi*, *erra punti*, *lal ambadi*, *punti*, *tella ambadi* with Adilabad being an important district for landrace diversity. Atleast 105 accessions of kenaf/ roselle germplasm collections are made during crop specific/ multi-crop explorations undertaken in variability rich pockets of Telangana and the diversity mapping is depicted in Fig.2. Diversity is mainly distributed in Indravelly, Boath, Adilabad, Gudihathnoor, Bellampally, Nirmal, Kerameri, Neredigonda, Tamsi, Ichoda and Mudhole in Adilabad district, Kunavaram,

Burgampahad, Chinturu, V.R.Puram, Dummugudem and Manuguru in Khammam, Narsampet in Warangal, Kamareddy, Banswada and Armur in Nizamabad, Choutuppal and Chityal in Nalgonda, Mallial and Siricilla in Karimnagar, Serilingampally in Ranga Reddy, Amangallu in Mahaboobnagar and Patancheru and Ramayampeta in Medak district. The tribal groups, Gonds and Lambadas are mainly associated with the cultivation, patronage and consumption of kenaf/ roselle crops. Generally, kenaf and roselle are cultivated as inter crops with cowpea, sunnhemp, garlic, onion, pigeon pea, sorghum and spinach in mixed farming situations. The production potential and genetic variability of landraces of roselle for key agro-economic traits under high density planting and one time harvesting system was elucidated.

Good diversity occurs in kenaf/ roselle for plant height (tall/ very tall/ extra tall), branching habit (single stemmed/ intermediate/ highly branched/ very strongly branched), nodes/ plant, stem colour (green/ purple), stem thickness (thin/ stout/ very stout), stem pubescence (smooth/ hairy/ prickly), leaf shape (unlobed/ partially lobed/ deeply lobed), leaf size (small/ big/ very big), leaf/ vein/ petiole colour (green/ dark green/ purple), stipule (exstipulate/ stipulate), corolla (outer/ inner) colour (yellow/ purple/ pink), spininess (non-spinous/ spinous/ extra-spinous), capsule colour (smooth/ hairy/ bristled) capsule pubescence (smooth/ hairy/ bristled), seed shape (reniform/ sub-reniform/ angular), seed colour (brown/ grey), days to flowering, days to maturity and taste (sour/ normal/ sweet).

Some of the rare morphotypes with interesting diversity augmented in roselle include IC261045 (white epi-calyx and dark purple stems), IC526895 (medium tall, highly branched with medium - large capsules), IC526896 (very tall and highly branched), IC526897 (rare morphotype) and IC526898 (red epi-calyx). Among the germplasm, it was observed that, kenaf genotypes- IC426305 from Bommraspet, Ranga Reddy district and IC261045 from Nalgonda district were found to be moderately resistant to moisture stress. Attempts were made to assess climate suitability for sustainable vegetable roselle cultivation in India based on extrapolating collections from Andhra Pradesh and Telangana using MaxEnt model (Thirupathi Reddy *et al.*, 2015 b). The potential of mesta diversity to improve rural economy was studied.



**Fig. 2.** Diversity mapping for Kenaf and Roselle and germplasm sampled in districts of Telangana.

### Purslane

Purslane (*Portulaca oleracea* L.) which belongs to family Portulacaceae is an annual, succulent, herbaceous, cosmopolitan species known by various names, as Common purslane/ *Gangapaavili koora, peddapayili koora* etc. and is an important and commonly consumed green leafy vegetable especially by the small and marginal farming families/ landless labour in Telangana. In purslane, the named landraces that occur include *Barre payala, ganga payala, nalla payala, pappu koora, sanna payala* with Medak being an important district for landrace diversity. Atleast 25 accessions of purslane germplasm collections are made during crop specific/ multi-crop explorations undertaken in diversity rich pockets of Telangana. Diversity is mainly distributed in Papannapet and Zaheerabad in Medak district, Amur and Kamareddy in Nizamabad, Manchala in Ranga Reddy and Parakala and Nellikuduru in Warangal district. Considerable diversity occurs in growth habit (erect/ decumbent), plant height, stem colour (green/ red), branching (diffused), internode length, leaf orientation (alternate/ sub-opposite), leaf colour (green/ green with red margin), leaf shape (variable/ ovate/ obovate/ oval-elliptical), leaf tip (obtuse/ slightly notched), leaf pubescence (glabrous/ smooth), petiole (sessile/ indistinctly petiolate/ short stalked), flower orientation (single/ clusters of two - five), petal colour (orange-yellow/ purple/ white/ white-pink), seed shape (round/ oval), seed colour (brown/ black) etc..

Purslane is described as a power food because of its high nutritive and antioxidant properties. It has better nutritional quality than major cultivated vegetables with higher beta-carotene, ascorbic acid and alpha-

linolenic acid (omega-3 fatty acid). Purslane has been shown to contain five times higher omega-3 fatty acids than spinach and highest content of vitamin A among the green leafy vegetables.

### Other leafy vegetables

The species diversity in other green leafy vegetables include *Mentha spicata* L. (Garden mint, lamb mint, spearmint/ *pudina*), *Rumex acetosa* L. (Common sorrel, garden sorrel/ *chukka koora*) and *Rumex vesicarius* L. (Bladder dock, country sorrel/ *chukka koora*). In Spearmint, common sorrel and bladder dock local diversity occur for leaf characters, aroma and taste. The potential habitats mapping suitable for cultivation of sorrel in India was studied and worked out by Thirupathi Reddy *et al.* (2015 d) using Maximum Entropy model.

Some of the un-common but important green leafy vegetables for nutrition point of view/ medicinal value include *Alternanthera sessilis* (L.) R. Br. Ex DC. (Dwarf copperleaf, sessile Joyweed, khaki weed/ *ponnaganti koora*), *Talinum cuneifolium* L. (Ceylone spinach/ *ceylone bachchali, seema bachchali*), *Moringa oleifera* Lam. (Drumstick/ *mulakkaya, munaga*), *Tamarindus indica* L. (Tamarind/ *chintha chiguru*), *Plectranthus amboinicus* (Lour.) Spreng. (Indian borage/ *vaamu aaku*), *Chenopodium album* L. (Lamb's quarters, pig weed/ *pappukoora*), *Sauvagesia androgynus* (L.) Merr. (Chekurmanis, katuk, multi vitamin plant, star gooseberry/ *chekurmanis aaku*), *Cichorium intybus* L. (Chicory, wild endive/ *kasini koora*) and *Lactuca sativa* L. (Garden Lettuce/ *kavu*). Except for *Alternanthera sessilis/ ponnaganti koora*, which some times may occur in wild state as well, all the other species are cultivated in fields/ kitchen garden/ pot herbs out of interest/ taste/ special nutritional requirements. The

less known/ wild edible leafy vegetables of Telangana are given in Table 2.

#### Conservation of germplasm

At least 125 accessions of germplasm of leafy vegetable crops consisting of amaranth (47), bladder

dock (14), common purslane (11), roselle (20), spinach (19) and others (Common/ garden sorrel, indian spinach, lamb's quarters/ pig weed, spearmint) (14) from the state of Telangana are in the National Gene Bank at NBPGR under long term conservation.

**Table 1.** Distribution of named landrace diversity in leafy vegetable crops in Telangana

| District        | <i>Amaranthus</i> spp.                                                                                                                                                     | Indian spinach                                                                   | Kenaf                                                    | Roselle                                 | <i>Portulaca</i> spp.                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|
| <b>Adilabad</b> | <i>Bhaji koora, Erra totakoora, Pedda totakoora</i>                                                                                                                        |                                                                                  |                                                          | <i>Ambadi, Lal ambadi, Tella ambadi</i> |                                                                                            |
| <b>Khammam</b>  | <i>Erra totakoora, Mulla totakoora, Perugu totakoora, Tella totakoora</i>                                                                                                  |                                                                                  |                                                          |                                         |                                                                                            |
| <b>Medak</b>    | <i>Chakravarthi koora, Doggali koora, Erra totakoora, Koya koora, Kuppi koora, Mulla doggali, Mulla totakoora, Puvvu totakoora, Rajagiri koora, Sirri koora, Sirru aku</i> | <i>Erra bachchali, Mayalu, Nalla bachchali, Pulla bachchali, Tella bachchali</i> | <i>Erra pundi, Nalla pundi, Pundi koora, Tella pundi</i> |                                         | <i>Barre payala, Ganga payala, Nalla payala, Pappu koora, Paruppu keerai, Sanna payala</i> |

**Table 2.** Less known/ wild edible leafy vegetables of Telangana

| Species                                         | Family         |
|-------------------------------------------------|----------------|
| <i>Abelmoschus manihot</i> (L.) Medic.          | Malvaceae      |
| <i>A. moschatus</i> Medic.                      | Malvaceae      |
| <i>Abutilon indicum</i> (L.) Sweet              | Malvaceae      |
| <i>Acacia concinna</i> DC                       | Mimosaceae     |
| <i>A. farnesiana</i> Willd.                     | Mimosaceae     |
| <i>Acalypha indica</i> L.                       | Euphorbiaceae  |
| <i>Achyranthes aspera</i> L.                    | Amaranthaceae  |
| <i>Acronychia pedunculata</i> (L.) Miq.         | Rutaceae       |
| <i>Adhatoda vasica</i> Nees                     | Acanthaceae    |
| <i>Aerva lanata</i> Juss.                       | Amaranthaceae  |
| <i>Aeschynomene aspera</i> L.                   | Papilionaceae  |
| <i>Alternanthera sessilis</i> DC                | Amaranthaceae  |
| <i>Alysicarpus rugosus</i> DC                   | Papilionaceae  |
| <i>Amaranthus blitum</i> L.                     | Amaranthaceae  |
| <i>A. gangeticus</i> L                          | Amaranthaceae  |
| <i>A. paniculatus</i> L.                        | Amaranthaceae  |
| <i>A. viridis</i> L.                            | Amaranthaceae  |
| <i>Anisochilus carnosus</i> Wall.               | Lamiaceae      |
| <i>Argyreia nervosa</i> (Burm. F.) Boj.         | Convolvulaceae |
| <i>A. strigosa</i> Sant. & Patel                | Convolvulaceae |
| <i>Asteracantha longifolia</i> Nees             | Acanthaceae    |
| <i>Asystasia gangetica</i> (L.) Anders.         | Acanthaceae    |
| <i>Atylosia scarabaeoides</i> Benth.            | Papilionaceae  |
| <i>Alysicarpus vaginalis</i> DC.                | Papilionaceae  |
| <i>Arthrocneum indicum</i> Moq                  | Chenopodiaceae |
| <i>Arundinella setosa</i> Trin.                 | Poaceae        |
| <i>Asystasia gangetica</i> Anders               | Acanthaceae    |
| <i>Azadirachta indica</i> A. Juss. Neem         | Meliaceae      |
| <i>Barringtonia acutangula</i> Gaertn.          | Lecythidaceae  |
| <i>Boerhaavia</i> spp.                          | Nyctaginaceae  |
| <i>Borreria articulata</i> (Linn.) F.. Williams | Rubiaceae      |

|                                            |                  |
|--------------------------------------------|------------------|
| <i>Cassia</i> spp.                         | Caesalpiniaceae  |
| <i>Celosia argentea</i> L.                 | Amaranthaceae    |
| <i>Chlorophytum laxum</i> R. Br.           | Liliaceae        |
| <i>Cleome gynandra</i> L.                  | Capparidaceae    |
| <i>Cocculus hirsutus</i> (L.) Diels.       | Menispermaceae   |
| <i>Commelina</i> spp                       | Commelinaceae    |
| <i>Corchorus trilocularis</i> L            | Tiliaceae        |
| <i>Cyperus</i> spp.                        | Cyperaceae       |
| <i>Dalbergia paniculata</i> Roxb.          | Papilionaceae    |
| <i>Dioscorea pentaphylla</i> L.            | Dioscoreaceae    |
| <i>Dregea volubilis</i> Benth.             | Asclepiadaceae   |
| <i>Embelia ribes</i> Burm f.               | Myrsinaceae      |
| <i>Erythroxylum monogynum</i> Roxb.        | Erythroxylaceae  |
| <i>Euphorbia hirta</i> L.                  | Euphorbiaceae    |
| <i>Gisekia pharnaceoides</i> L.            | Aizoaceae        |
| <i>Glinus lotoides</i> L                   | Aizoaceae        |
| <i>Gnaphalium indicum</i> L.               | Asteraceae       |
| <i>Gymnema sylvestre</i> R. Br.            | Asclepiadaceae   |
| <i>Gynandropsis pentaphylla</i> DC.        | Capparidaceae    |
| <i>Homonoia riparia</i> Lour               | Euphorbiaceae    |
| <i>Hygrophila salicifolia</i> Nees         | Acanthaceae      |
| <i>Hyptis suaveolens</i> Poit.             | Lamiaceae        |
| <i>Impatiens latifolia</i> L.              | Balsaminaceae    |
| <i>Ipomoea</i> spp.                        | Convolvulaceae   |
| <i>Justicia</i> spp.                       | Acanthaceae      |
| <i>Lannea coromandelica</i> (Houtt.) Merr. | Anacardiaceae    |
| <i>Leea indica</i> (Burm.) Merr.           | Vitaceae         |
| <i>Leucaena glauca</i> Benth.              | Mimosaceae       |
| <i>Leucas aspera</i> (willd.) Spr.         | Lamiaceae        |
| <i>Lippia nodiflora</i> Rich.              | Verbenaceae      |
| <i>Leptadenia reticulata</i> Wt. & Arn.    | Asclepiadaceae   |
| <i>Lumnitzera racemosa</i> Willd.          | Combretaceae     |
| <i>Maesa chisia</i> Buch.                  | Myrsinaceae      |
| <i>Martynia annua</i> L                    | Martyniaceae     |
| <i>Malvastrum coromandelianum</i> L.       | Malvaceae        |
| <i>Melilotus indica</i> L.                 | Papilionaceae    |
| <i>Melochia corchorifolia</i> L.           | Sterculiaceae    |
| <i>Mukia maderaspatana</i> L.              | Cucurbitaceae    |
| <i>Merremia emarginata</i> Burm. f.        | Convolvulaceae   |
| <i>Mollugo cerviana</i> Seringe            | Aizoaceae        |
| <i>Momordica cochinchinensis</i> Spreng.   | Cucurbitaceae    |
| <i>Mussaenda frondosa</i> L.               | Rubiaceae        |
| <i>Nelumbo nucifera</i> Gaertn.            | Nymphaeaceae     |
| <i>Nothosaerva brachiata</i> Wt.           | Amaranthaceae    |
| <i>Nymphaea stellata</i> Willd.            | Nymphaeaceae     |
| <i>Ocimum americanum</i> L.                | Lamiaceae        |
| <i>O. gratissimum</i> L.                   | Lamiaceae        |
| <i>Oplismenus compositus</i> (L) Beauv.    | Poaceae          |
| <i>Ottelia alimooides</i> Pres.            | Hydrocharitaceae |
| <i>Oxalis corniculata</i> L.               | Oxalidaceae      |
| <i>Pavonia odorata</i> Willd.              | Malvaceae        |
| <i>Pergularia daemia</i> (Forsk.) Chiov.   | Asclepiadaceae   |
| <i>Phyllanthus acidus</i> Skeels.          | Euphorbiaceae    |
| <i>Physalis minima</i> L.                  | Solanaceae       |
| <i>Pistia stratiotes</i> L.                | Araceae          |
| <i>Polygonum glabrum</i> Willd.            | Polygonaceae     |
| <i>Pogostemon parviflorus</i>              | Lamiaceae        |
| <i>Portulaca tuberosa</i> L.               | Portulacaceae    |

|                                              |                  |
|----------------------------------------------|------------------|
| <i>Polygala chinensis</i> L.                 | Polygalaceae     |
| <i>Randia spinosa</i> Poir.                  | Rubiaceae        |
| <i>Rothia indica</i> (L.) Druce              | Papilionaceae    |
| <i>Rumex acetosella</i> L.                   | Polygonaceae     |
| <i>Salvadora persica</i> L.                  | Salvadoraceae    |
| <i>Securinega leucopyrus</i> (Willd.) Muell. | Euphorbiaceae    |
| <i>Solanum indicum</i> L.                    | Solanaceae       |
| <i>Solanum nigrum</i> L.                     | Solanaceae       |
| <i>Sphaeranthus indicus</i> L.               | Asteraceae       |
| <i>Spondias pinnata</i> (L. f.) Kurz.        | Anacardiaceae    |
| <i>Tephrosia purpurea</i> Pers.              | Papilionaceae    |
| <i>Teramnus labialis</i> Spreng.             | Papilionaceae    |
| <i>Thespesia populnea</i> Soland.            | Malvaceae        |
| <i>Trianthema portulacastrum</i> L.          | Aizoaceae        |
| <i>Trichodesma indicum</i> R. Br.            | Boraginaceae     |
| <i>Triumfetta annua</i> L.                   | Tiliaceae        |
| <i>Typha angustifolia</i> L.                 | Typhaceae        |
| <i>Urginea indica</i> Kunth                  | Liliaceae        |
| <i>Vallineria spiralis</i> L.                | Hydrocharitaceae |

## CONCLUSION

Intensive cultivation of leafy vegetables in the peri-urban system using agricultural inputs is perfectly suitable for high productivity and this system needs to be encouraged and promoted under diversification of the crop species (Sunil *et al.*, 2015). Whereas, the patronage of a wide range of uncultivated species by the majority of tribal households as green leafy vegetables and their associated indigenous traditional knowledge (ITK) appears to be the cornerstone for livelihood and nutritional security. The utilization pattern of harnessing of the local green leafy vegetables by the tribal groups is a tribute to their knowledge encompassing synchronization of their livelihoods with the ecosystem. Most of the green leafy vegetables are harvested and consumed directly by the households without any form of trade because of localized availability and consumption traditions within their environs. The utilization/ ITK of some of the uncultivated plant species by the tribal groups needs to be validated considering the immense benefits in view of their rich nutrient status, hardiness and perennial nature. Such initiatives can effectively used to combat vitamin and micro-nutrient deficiencies in all regions of similar situations.

## REFERENCES

**Arora, R.K.** (1981). Plant genetic resources exploration and collection: Planning and logistics. In: Mehra, K.L., Arora, R.K and Wadhi, S.R. (Eds.). Plant exploration and collection. NBPGR Sci. Monograph 3. National Bureau of Plant Genetic Resources, New Delhi. Pp 46-54.

[Google Scholar](#)

**Bennett, E** (1970). Tactics of plant exploration. In: Frankel, O.H and Bennett, E. (Eds.). Genetic

resources in plants - Their exploration and conservation. IBP Handbook No. 11. International Biological Programme. Blackwell, Oxford, London. Pp 157-179.

[Google Scholar](#)

**Brown, A.H.D. and Marshall, D.R.** (1995). A basic sampling strategies, theory and practice. In: Guarino, L., Ramanatha Rao, V and Reid, R. (Eds.). Collecting plant genetic diversity: Technical guidelines. CAB International, Oxon, UK. Pp 75-91.

[Google Scholar](#)

**Hawkes, J.G.** (1980). Crop genetic resources - A field collection manual. IBPGR/ EUCARPIA, Univ. of Birmingham, UK.

[Google Scholar](#)

**Kalidasu, G., Suryakumari, S., Sarada, C., Rajani, A., Hariprasada Rao N., Pandravada, S.R. and Naram Naidu, L.** (2015). Exploiting genetic divergence for crop improvement in Coriander (*Coriandrum sativum* L.): A neglected and underutilized crop. Indian Journal of Plant Genetic Resources, 28 (2): 222-228.

[Google Scholar](#)

**Pandravada, S.R., Senguttuvvel, P., Hanamaratti, N.G., Surendra, P., Ibrahim, M., Sivaraj, N., Kamala, V. and Sarath Babu, B.** (2017). Gene-pool sampling and conservation of endemic specialty rice (*Oryza sativa* L.) landraces and current status of their genetic erosion from diversity rich ecosystems of central and western Karnataka. International Journal of Agriculture Sciences, 9 (52): 4880-4885.

[Google Scholar](#)

**Pandravada, S.R., Sivaraj, N. and Murthy, K.R.K.** (1996). Collection of rice germplasm from Adilabad district, Andhra Pradesh, India. Indian Journal of Plant Genetic Resources, 9 (2): 255-259.

[Google Scholar](#)

**Ray, T. and Roy, S.C.** (2009). Genetic diversity of Amaranthus species from the Indo-Gangetic Plains

revealed by RAPD analysis leading to the development of Ecotype-Specific SCAR marker. Journal of Heredity, 100 (3): 338-347.

[Google Scholar](#)

**Shukla, S., Bhargava, A., Chatterjee, A., Pandey, A.C. and Mishra, B.K.** (2010). Diversity in phenotypic and nutritional traits in vegetable amaranth (*Amaranthus tricolor*), a nutritionally underutilized crop. The Journal of the Science of Food and Agriculture, 90 (1): 139-144.

[Google Scholar](#)

**Sunil, N., Pandravada, S.R., Thirupathi Reddy, M., Sivaraj, N., Kamala, V. and Chakrabarty, S.K.** (2015). Green leafy vegetables from two traditional agro-ecosystems of peninsular India - Their documentation and relevance. Agricultural Science Digest, 35 (1): 19-24.

[Google Scholar](#)

**Thirupathi Reddy, M., Hameedunnisa Begum, Sunil, N., Pandravada, S.R., Sivaraj, N. and Kumar, S.** (2014 b). Preliminary characterization and evaluation of Indian spinach (*Basella* spp. L.) for agro-economic and quality traits. Plant Breeding and Biotechnology, 2 (1):48-63.

[Google Scholar](#)

**Thirupathi Reddy, M., Hameedunnisa Begum, Sunil, N., Pandravada, S.R. and Sivaraj, N.** (2015 b). Assessing climate suitability for sustainable vegetable Roselle (*Hibiscus sabdariffa* var. *sabdariffa* L.) cultivation in India using MaxEnt model. Agricultural and Biological Sciences Journal, 1 (2): 62-70.

[Google Scholar](#)

**Thirupathi Reddy, M., Hameedunnisa Begum, Sunil, N., Pandravada, S.R., Sivaraj, N. and Kumar, S.** (2015 c). Mapping the climate suitability using MaxEnt modelling approach for Ceylon Spinach (*Basella alba* L.) cultivation in India. The Journal of Agricultural Sciences, 10 (2): 87 - 97.

[Google Scholar](#)

**Thirupathi Reddy, M., Hameedunnisa Begum, Sunil, N., Pandravada, S.R., Sivaraj, N. and Shashi, K.** (2015 d). Predicting potential habitat distribution of Sorrel (*Rumex vesicarius* L.) in India from presence-only data using Maximum Entropy model. Open Access Library Journal, 2: e1590.

[Google Scholar](#)

