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Abstract: Sorghum bicolor is one of the diverse and staple food crops grown on earth. About 41.97 million hectares on the
earth has been cultivated sorghum in the year of 2021-2022. Drought is prevailing problem and important factor all over the
world on agriculture production. Along with that, climate change making a serious situation for the cultivation of crops.
Sorghum is one of the excellent crops capable of adapting to drastic environmental changes. By understanding the
mechanism behind the adaptation and tolerance to the drought, we can make better crop. This review covers the possible
approaches in the drought tolerance of the Sorghum such as the morphological character determining the drought stress
tolerances, microbial interactions forming symbionts and helping in stress tolerance, breeding and molecular approaches to
improve the abiotic stress tolerance and the use of QTLs and Marker Assisted Selection for improving the drought tolerance.
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INTRODUCTION

orghum (Sorghum bicolor) commonly referred as

Indian millet, is a cereal plant of the family
Poaceae. The origin of the plant is considered to be
Africa. It is a drought tolerant C4 grass plant used for
production of grains, forage, sugar, lignocellulosic
biomass and a genetic model for C4 grasses due to its
relatively small genome (approximately 800 Mbp),
diploid genetics, diverse germplasm and colinearity
with other Cs grass genomes (Mc Cormicket al.,
2018). Sorghum is one of the staple food for many
peoples of Africa and some parts of Asia. Products
such as breads, cakes, porridge and alcoholic drink
beer is made out of sorghum grains. Nearly all
sorghum production (97%) in western hemisphere is
for livestock feed and forage because it is a lower
cost alternative to maize and requires less water to
grow (Hancock, 2000). The growth stage of the crop
and the environmental factors decides the water
requirement for sorghum. As imbibitions is the first
step of seed germination, water plays a critical role in
it. Drought stress is a condition where water loss in
plants exceeds the ability of plant roots to absorb
water from soil, thereby affecting the plant
metabolism and ultimately resulting in yield loss.
Plants use three main strategies (drought escape,
drought avoidance and drought tolerance) to survive
under drought stress (Osmolovskayaet al., 2018).
Plants are adapter to tolerance by wide range of
responses at physiological, molecular and
biochemical levels. Sorghum can tolerate short
period of less severe water deficit. However, long
term and several stress can affect sorghum growth
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and the final yield (Assefa et al., 2010). It’s tolerance
to drought is a consequence of heritable
morphological and anatomical characters (such as
thick leaf wax and deep root system), physiological
responses (such as osmotic adjustment and stay green
trait) and adaptive mechanisms that allow tolerance
under extreme drought conditions (Tari et al., 2017).
This review paper discusses aboutthe droughtstress
and the physiological and molecular mechanisms in
tolerating the drought stress and molecular methods
of improving droughttolerance in sorghum.
Sorghum as a dry land crop

Sorghumis an important crop plant in Dry land
agriculture. Sorghum’s heat and drought tolerance
make it well suited to the area’s semi-arid summer
growing conditions, and its genetic diversity makes
the crop potentially useful as a forage, a gluten free
grain source, and in biofuel production (Dahlberg et
al.,, 2011). Despite the level of environmental
adaption that sorghum display, failure of seedling
establishment due to abiotic stress is a major problem
(Howarth et al., 1996). One strategy for maintaining
adequate moisture in the seed and root zone for a
longer time period is deeper sowing of the seed, but
in this case, growth depends longer on seed reserves
before emergence occurs (Howarth et al., 1996).
Yield instability is another problem when growing
grain sorghum in dryland regions. More consistent
yields resulted in Australia when every third row or
two row of every four rows were left blank compared
with uniformly spaced 1-m rows when yields were
2500 kg hal or less (Bandura et al., 2006). Drought
stress affects starch synthesis and energy (ATP)
production process through increased respiration
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rate, resulting in reduced index of seedling vigor,
GRI and PG (Queiroz et al., 2019). However, the
effect of drought stress on different sorghum
genotypes may differ due to the variability in their
response to the stress. For example, drought stress
during terminal post-flowering stage, genotypes with
a high growth rate and short duration of grain filling
produced larger grains compared to genotypes with
longer duration of grain development (Tuinstraet al.,
1997). Ngaraet al., (2021) reported that Plant
response to drought stress and droughttolerance is a
result of complex biological processes involving
physiological, biochemical, genomic, proteomic and
metabolomics changes.

Morphological characters and adaptations of
plants in drought stress

Drought tolerance is the ability of a plant to endure
the water deficit conditions. Most of the plants at
their habitat has one or more adaptations to withstand
stress conditions. Crops like sorghum are naturally
adapted to dry conditions, while many crops like
rice, wheat, maize are designed to adapt to drought
conditions by either conventional breeding or
through  biotechnological approaches. Many
structural adaptations like stomatal opening and
closing, reduced number of leaf and leaf area, root
system changes to increase water absorption,
presence of small hairs called trichomes on leaf to
absorb water from atmosphere. Plants growing in dry
areas have developed xeromorphic traits to reduce
transpiration under drought stress (Basuet al., 2016).
Assefa (2012), reported that leaf rolling is a good
indicator of drought tolerance in plants. Studies of
Bibi et al., (2012) reported that root length is an
important trait against drought stress in plant
varieties. The variety with longer root has the
drought resistance ability to absorb nutrients and
water availability in soil. Drought tolerance was
found to be highly associated with root
characteristics such as root thickness, root length
density, number of thick roots, root volume and root
dry weight (Wagaw, 2019). Many plants have
modified leaf like pine needle and avoid drought
through sunken stomata. Sorghum and wheat have
waxy covering of plant cuticle to control
transpiration. This trait was found to be associated
with seedling stage of drought tolerance in sorghum.
Symbionts based approach to abiotic stress
Microbial interactions with crop plants are key to the
adaptation and survival of both the partners in any
abiotic environment. Induced Systemic Tolerance
(IST) is the term being used for microbe-mediated
induction of abiotic stress responses (Meena et al.,

2017).  Plant  growth  promoting  microbes
(Symbionts) are capable of conferring stress
tolerance to various host plants and beneficiary to
both monocot and dicot crop species. Marasco et al.,
(2013) reported that microbes isolated from the roots
of one host species cultivated under dessert farming
conditions are capable of improving the growth of a
different host species when grown under water-stress
regime. Mayaket al., (2004), found that the
bacterium Achromobacterpiechaudii, isolated from
dry riverbeds of southern Israel, was capable of
increasing salt and drought resistance in both pepper
and tomato. The Kapoor et al., (2013) stated that
Arbuscular Mycorrhizae enhance plant growth
productivity and nutrient uptake under stress
condition and also enhance osmolyte production,
influence  plant-water relation and rate of
photosynthesis, alter leaf water potential, ionic
balance, antioxidant production and other
physiological and biological parameters and thus
improve plant’s capacity to tolerate abiotic stress.
The findings of Symancziket al., (2018) suggested
that under the drought stress condition,
Rhizophagusarabicus transfers significantly more
Nitrogen to sorghum than Rhizophagusirregularis.
Recently, bacterial cold-shock proteins transformed
into various plant species led to increased tolerance
to a variety of abiotic stresses, including cold, heat,
and drought (Castiglioni et al., 2008).

Breeding and molecular strategies for drought
stress

There are three mechanisms through which plants
can survive drought tolerance. They are drought
avoidance, (fig.1) drought tolerance (fig.2) and
drought escape (fig.3). Understanding the genes
involved in these mechanism help us to improve the
plants to resist the droughtand improve productivity.
Sorghum is a short day plant, flowering initiation
occur in 15t day when plants are exposed to short
day light (10 hours) for 5 days (Caddel, 1972).
Several salt, drought, and cold-tolerant lines have
been developed through breeding and are being
maintained in different locations all over the world
(Magbool et al., 2001). In general, for self-
pollinated crops, pedigree and bulk method can be
used and for cross pollinated crops, recurrent
selection can be used. Backcross could be used if
drought resistant traits are transferring to a high
yielding genotype. Biparental mating (half-sib & full
sib) maintains the broad genetic base as well as
provides the scope to evolve the desired genotype of
drought resistance (Yunuset al., 1982).
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Fig. 3. Mechanisms associated with droughtescape.

Identification of the molecular markers associated
with yield or other morphological traits related to
drought resistance, those markers could be used as
selection criteria for drought resistance (Belete,
2018). Molecular markers linked to QTL for drought
tolerance could be used in increasing efficiency of
breeding efforts to select sorghum germplasm with
enhanced drought tolerance once these markers are
identified through carefully monitored
characterization of appropriate germplasm under
stress condition (Belete, 2018). Other techniques
include biotechnological approach ie., Introducing
and expressing the drought tolerant gene to sorghum,
which protect sorghum from drought stress. Gene
transfer is efficient and time saving method
compared to breeding method, which is highly
suggestible in recent researches. Proline is an amino
acid, which act as osmolytes in plants that protect
plant from osmotic stress (Yoshibaet al., 1997).
P5CSF129A gene which synthesis mutated pyrroline
5-carboxylate synthetase, the key enzyme for proline
biosynthesis from glutamic acid were transferred to

Sorghum bicolor through Agrobacteriumtumefaciens
mediated gene transfer and overexpressed. Proline
accumulated in transgenic sorghum (Reddy, 2015 &
Kishor, 1995). Transferring mtID gene from E. coli
into Sorghum bicolor which encodes for mannitol-1-
phosphate dehydrogenase enzyme, as a result the
crop can tolerate water deficit conditions
(Maheswariet al., 2010). Mainly two approaches ie.,
targeted and shotgun approach facilitate genetic
engineering to obtain transgenic plants conferring
drought resistance (Belete, 2018).

Genes associated with drought tolerance in
sorghum
Cuticle is covered by a layer of wax called

epicuticular wax. This wax is chemically made up of
hydrophobic long chain organic compounds. This
plays an chief role in controlling the cuticular
transpiration. Many research have shown that
drought stress can increase the amount of wax
deposition on leaf surface (Yang et al., 2011). Bao et
al (2017) cloned the SbWINL1 gene into
Arabidopsis. The results revealed that overexpression
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of SbWINL1 in Arabidopsis showed increase in wax
and cutin. It was also reported that WIN1 gene is
responsible for drought and defence responses in
plants (Sela et al., 2013). Li et al (2019) worked on
SbER1 and SbER2, genes that confer drought
tolerance in maize. Their results proved that ShER2-
1 had an important role in drought stress. SOSNAC1
is a plant specific NAC TF. This has a role in
governing abiotic stress responses in sorghum. In
response to ABA, SbSNAC1 is found to have high
expression rate in roots. Findings of Lu et al (2013)
showed that overexpression of SbSNACL gene in
transgenic plants showed improved drought stress
tolerance. Mittal et al (2017) concluded that many
drought responsive CDPKs were associated with
regulation to confer drought tolerance. Expression of
SbWRKY30 gene promises drought tolerance in
Arabidopsis. Thus SbWRKY30 may be a candidate
gene for droughttolerance (Yang et al., 2020).

QTLs and Marker Assisted Selection for drought
tolerance breeding

Quantitative Trait Locus (QTL) is the method of
locating the genes for quantitative traits with the help
of molecular markers. There are many traits
identified that govern drought tolerance and are been
mapped on sorghum genome. Tunistraet al., (1997)
studied a set of 98 recombinant inbred sorghum lines

for post flowering drought tolerance through QTL.
The overview of breeding approach for drought
tolerance is given in fig.1. Stay — green in sorghumis
one among the very needed trait for drought
tolerance. Stay — green trait is the ability of sorghum
plant to retain the green leaves even under
physiological stress that can enhance the
photosynthetic rate. Marker Assisted Selection helps
in selection of the parental genotype with the
contrasting traits for crop improvement. Molecular
markers includes RFLP, RAPD, SSR, AFLP, SNP
etc. Among these, Single Nucleotide Polymorphism
(SNP) markers can detect the diversity at a single
base level (Disasaet al., 2016). The SSR markers
were found to ease the transfer of important stay-
green QTL to sorghum cultivars of interest (Edema
and Amoding, 2015). Abou-Elwafa and Shehzad
(2018) studied the molecular diversity among 96
sorghum lines with molecular markers. They
reported their findings of three drought responsive
QTLs ie., Xtxp69 on chromosome 3, SbAGAOL on
chromosome 8 and SbAGBO03 on chromosome 9.
these genes are associated with drought resistant
linked phenotypic traits. A collective breeding
approaches can be screened and used to develop
drought tolerant superior cultivars.

Source of Drought tolerance

Tolerant Crops

Germplasm resources

QTLs / Markers

Crop Improvement

Marker assisted
selection

Genetic

engineering

Conventional
Breeding

Superior Drought tolerant genotypes developed

Fig. 1. Anoverview of collective methods of crop improvement for drought stress

CONCLUSION

Water is one among the basic necessities to maintain
life processes. Ultimately irrigation for crops is

essential for food security on a global level. Climate
changes in the present world contributes majorly for
the abiotic stress in plants. Drought stress is normally
considered to create a negative impact on plant
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growth and yield. Generally, plants adopt themself to
survive in stress conditions. Severe drought can
result in disturbing the photosynthetic rate, leading to
altered plant metabolism and thereby resulting in
crop failure and yield loss. In the view of crop
improvement, understanding the principles of
physiological and molecular basis of drought stress is
required. Sorghum is naturally referred as camel crop
as it is having the high ability of drought tolerance
and thus performs well. It is also a C4 plant of good
photosynthesis efficiency. Drought stress affects
sorghum at every growth stages. So, to gain more
understanding of stress effect on plants, detailed
molecular study must be done at specific growth
stages. Further research should be done on studying
the combined abiotic stress components in sorghum
for crop improvement. In regard to this, screening for
new genotypes with high drought tolerance should be
done. Many drought stress governing genes have
been mapped and few were also discussed above and
molecular mechanisms associated with that are also
found. Finally to conclude, the advances that proceed
in genetic and molecular studies and modern
breeding strategies will enhance sorghum in
conferring high degrees of stress tolerance.
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