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Abstract: Sorghum bicolor is one of the diverse and staple food crops grown on earth. About 41.97 million hectares on the 

earth has been cultivated sorghum in the year of 2021-2022. Drought is prevailing problem and important factor all over the 
world on agriculture production. Along with that, climate change making a serious situation for the cultivation of crops. 

Sorghum is one of the excellent crops capable of adapting to drastic environmental changes. By unders tanding the 

mechanism behind the adaptation and tolerance to the drought, we can make better crop. This review covers the possible 

approaches in the drought tolerance of the Sorghum such as the morphological character determining the drought stress 

tolerances, microbial interactions forming symbionts and helping in stress tolerance, breeding and molecular approaches to 
improve the abiotic stress tolerance and the use of QTLs and Marker Assisted Selection for improving the drought tolerance. 
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INTRODUCTION 

 

orghum (Sorghum bicolor) commonly referred as 

Indian millet, is a cereal plant of the family 

Poaceae. The origin of the plant is considered to be 

Africa. It is a drought tolerant C4 grass plant used for 

production of grains, forage, sugar, lignocellulosic 

biomass and a genetic model for C4 grasses due to its 

relatively small genome (approximately 800 Mbp), 

diploid genetics, diverse germplasm and colinearity 

with other C4 grass genomes (Mc Cormicket al., 

2018). Sorghum is one of the staple food for many 

peoples of Africa and some parts of Asia. Products 

such as breads, cakes, porridge and alcoholic drink 

beer is made out of sorghum grains. Nearly all 

sorghum production (97%) in western hemisphere is 

for livestock feed and forage because it is a lower 

cost alternative to maize and requires less water to 

grow (Hancock, 2000). The growth stage of the crop 

and the environmental factors decides the water 

requirement for sorghum. As imbibitions is  the first 

step of seed germination, water plays a critical role in 

it. Drought stress is a condition where water loss in 

plants exceeds the ability of plant roots to absorb 

water from soil, thereby affecting the plant 

metabolism and ultimately resulting in yield loss. 

Plants use three main strategies (drought escape, 

drought avoidance and drought tolerance) to survive 

under drought stress (Osmolovskayaet al., 2018). 

Plants are adapter to tolerance by wide range of 

responses at physiological, molecular and 

biochemical levels. Sorghum can tolerate short 

period of less severe water deficit. However, long 

term and several stress can affect sorghum growth 

and the final yield (Assefa et al., 2010). It’s tolerance 

to drought is a consequence of heritable 

morphological and anatomical characters (such as 

thick leaf wax and deep root system), physiological 

responses (such as osmotic adjustment and stay green 

trait) and adaptive mechanisms that allow tolerance 

under extreme drought conditions (Tari et al., 2017).  

This review paper discusses about the drought stres s 

and the physiological and molecular mechanisms in 

tolerating the drought stress and molecular methods 

of improving drought tolerance in sorghum.   

Sorghum as a dry land crop 

Sorghumis an important crop plant in Dry land 

agriculture.  Sorghum’s heat and drought tolerance 

make it well suited to the area’s semi-arid summer 

growing conditions, and its genetic diversity makes 

the crop potentially useful as a forage, a gluten free 

grain source, and in biofuel production (Dahlberg et 

al., 2011).  Despite the level of environmental 

adaption that sorghum display, failure of seedling 

establishment due to abiotic stress is a major problem 

(Howarth et al., 1996).  One strategy for maintaining 

adequate moisture in the seed and root zone for a 

longer time period is deeper sowing of the seed, but 

in this case, growth depends longer on seed reserves 

before emergence occurs (Howarth et al., 1996).  

Yield instability is another problem when growing 

grain sorghum in dryland regions. More consistent 

yields resulted in Australia when every third row or 

two row of every four rows were left blank compared 

with uniformly spaced 1-m rows when yields were 

2500 kg ha-1 or less (Bandura et al., 2006). Drought 

stress affects starch synthesis and energy (ATP) 

production process through increased respiration 
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rate, resulting in reduced index of seedling vigor, 

GRI and PG (Queiroz et al., 2019).  However, the 

effect of drought stress on different sorghum 

genotypes may differ due to the variability in their 

response to the stress. For example, drought stress 

during terminal post-flowering stage, genotypes with 

a high growth rate and short duration of grain filling 

produced larger grains compared to genotypes with 

longer duration of grain development (Tuinstraet al., 

1997). Ngaraet al., (2021) reported that Plant 

response to drought stress and drought tolerance is  a 

result of complex biological processes involving 

physiological, biochemical, genomic, proteomic and 

metabolomics changes. 

Morphological characters and adaptations of 

plants in drought stress  

Drought tolerance is the ability of a plant to endure 

the water deficit conditions. Most of the plants at 

their habitat has one or more adaptations to withstand 

stress conditions. Crops like sorghum are naturally 

adapted to dry conditions, while many crops like 

rice, wheat, maize are designed to adapt to drought 

conditions by either conventional breeding or 

through biotechnological approaches. Many 

structural adaptations like stomatal opening and 

closing, reduced number of leaf and leaf area, root 

system changes to increase water absorption, 

presence of small hairs called trichomes on leaf to 

absorb water from atmosphere. Plants growing in dry 

areas have developed xeromorphic traits to reduce 

transpiration under drought stress (Basuet al., 2016). 

Assefa (2012), reported that leaf rolling is a good 

indicator of drought tolerance in plants. Studies of 

Bibi et al., (2012) reported that root length is an 

important trait against drought stress in plant 

varieties. The variety with longer root has the 

drought resistance ability to absorb nutrients and 

water availability in soil. Drought tolerance was 

found to be highly associated with root 

characteristics such as root thickness, root length 

density, number of thick roots, root volume and root 

dry weight (Wagaw, 2019). Many plants have 

modified leaf like pine needle and avoid drought 

through sunken stomata. Sorghum and wheat have 

waxy covering of plant cuticle to control 

transpiration. This trait was found to be associated 

with seedling stage of drought tolerance in sorghum. 

Symbionts based approach to abiotic stress  

Microbial interactions with crop plants are key to the 

adaptation and survival of both the partners in any 

abiotic environment. Induced Systemic Tolerance 

(IST) is the term being used for microbe-mediated 

induction of abiotic stress responses (Meena et al., 

2017). Plant growth promoting microbes 

(Symbionts) are capable of conferring stress 

tolerance to various host plants and beneficiary to 

both monocot and dicot crop species.  Marasco et al., 

(2013) reported that microbes isolated from the roots 

of one host species cultivated under dessert farming 

conditions are capable of improving the growth of a 

different host species when grown under water-stress  

regime. Mayaket al., (2004), found that the 

bacterium Achromobacterpiechaudii, isolated from 

dry riverbeds of southern Israel, was capable of 

increasing salt and drought resistance in both pepper 

and tomato.  The Kapoor et al., (2013) stated that 

Arbuscular Mycorrhizae enhance plant growth 

productivity and nutrient uptake under stress 

condition and also enhance osmolyte production, 

influence plant-water relation and rate of 

photosynthesis, alter leaf water potential, ionic 

balance, antioxidant production and other 

physiological and biological parameters and thus 

improve plant’s capacity to tolerate abiotic stress. 

The findings of Symancziket al., (2018) suggested 

that under the drought stress condition, 

Rhizophagusarabicus transfers significantly more 

Nitrogen to sorghum than Rhizophagusirregularis.  

Recently, bacterial cold-shock proteins transformed 

into various plant species led to increased tolerance 

to a variety of abiotic stresses, including cold, heat, 

and drought (Castiglioni et al., 2008). 

Breeding and molecular strategies for drought 

stress  

There are three mechanisms through which plants 

can survive drought tolerance. They are drought 

avoidance, (fig.1) drought tolerance (fig.2) and 

drought escape (fig.3). Understanding the genes 

involved in these mechanism help us to improve the 

plants to resist the drought and improve productivity . 

Sorghum is a short day plant, flowering initiation 

occur in 15th day when plants are exposed to short 

day light (10 hours) for 5 days (Caddel, 1972). 

Several salt, drought, and cold-tolerant lines have 

been developed through breeding and are being 

maintained in different locations all over the world 

(Maqbool et al., 2001).  In general, for self-

pollinated crops, pedigree and bulk method can be 

used and for cross pollinated crops, recurrent 

selection can be used.  Backcross could be used if 

drought resistant traits are transferring to a high 

yielding genotype.  Biparental mating (half-sib & full 

sib) maintains the broad genetic base as well as 

provides the scope to evolve the desired genotype of 

drought resistance (Yunuset al., 1982). 

  

 



JOURNAL OF PLANT DEVELOPMENT SCIENCES VOL. 14(2) 137 

          
Fig. 1. Drought avoidance mechanisms                 Fig. 2. Drought tolerance mechanisms 

 

 
Fig. 3. Mechanisms associated with drought escape. 

 

Identification of the molecular markers associated 

with yield or other morphological traits related to 

drought resistance, those markers could be used as 

selection criteria for drought resistance (Belete, 

2018).  Molecular markers linked to QTL for drought 

tolerance could be used in increasing efficiency of 

breeding efforts to select sorghum germplasm with 

enhanced drought tolerance once these markers are 

identified through carefully monitored 

characterization of appropriate germplasm under 

stress condition (Belete, 2018).  Other techniques  

include biotechnological approach ie., Introducing 

and expressing the drought tolerant gene to sorghum, 

which protect sorghum from drought stress. Gene 

transfer is efficient and time saving method 

compared to breeding method, which is highly 

suggestible in recent researches. Proline is an amino 

acid, which act as osmolytes in plants that protect 

plant from osmotic stress (Yoshibaet al., 1997). 

P5CSF129A gene which synthesis mutated pyrroline 

5-carboxylate synthetase, the key enzyme for proline 

biosynthesis from glutamic acid were transferred to 

Sorghum bicolor through Agrobacterium tumefaciens 

mediated gene transfer and overexpressed. Proline 

accumulated in transgenic sorghum (Reddy, 2015 & 

Kishor, 1995). Transferring mtlD gene from E. coli 

into Sorghum bicolor which encodes for mannitol-1-

phosphate dehydrogenase enzyme, as a result the 

crop can tolerate water deficit conditions 

(Maheswariet al., 2010). Mainly two approaches ie., 

targeted and shotgun approach facilitate genetic  

engineering  to  obtain  transgenic  plants  conferring 

drought resistance (Belete, 2018). 

Genes associated with drought tolerance in 

sorghum 

Cuticle is covered by a layer of wax called 

epicuticular wax. This wax is chemically made up of 

hydrophobic long chain organic compounds. This 

plays an chief role in controlling the cuticular 

transpiration. Many research have shown that 

drought stress can increase the amount of wax 

deposition on leaf surface (Yang et al., 2011). Bao et 

al (2017) cloned the SbWINL1 gene into 

Arabidopsis. The results revealed that overexpression 
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of SbWINL1 in Arabidopsis showed increase in wax 

and cutin. It was also reported that WIN1 gene is 

responsible for drought and defence responses in 

plants (Sela et al., 2013). Li et al (2019) worked on 

SbER1 and SbER2, genes that confer drought 

tolerance in maize. Their results proved that SbER2-

1 had an important role in drought stress. SbSNAC1 

is a plant specific NAC TF. This has a role in 

governing abiotic stress responses in sorghum. In 

response to ABA, SbSNAC1 is found to have high 

expression rate in roots. Findings of Lu et al (2013) 

showed that overexpression of SbSNAC1 gene in 

transgenic plants showed improved drought stress 

tolerance. Mittal et al (2017) concluded that many 

drought responsive CDPKs were associated with 

regulation to confer drought tolerance. Expression of 

SbWRKY30 gene promises drought tolerance in 

Arabidopsis. Thus SbWRKY30 may be a candidate 

gene for drought tolerance (Yang et al., 2020). 

QTLs and Marker Assisted Selection for drought 

tolerance breeding 

Quantitative Trait Locus (QTL) is the method of 

locating the genes for quantitative traits with the help 

of molecular markers. There are many traits 

identified that govern drought tolerance and are been 

mapped on sorghum genome. Tunistraet al., (1997) 

studied a set of 98 recombinant inbred sorghum lines 

for post flowering drought tolerance through QTL.  

The overview of breeding approach for drought 

tolerance is given in fig.1. Stay – green in sorghum is 

one among the very needed trait for drought 

tolerance. Stay – green trait is the ability of sorghum 

plant to retain the green leaves even under 

physiological stress that can enhance the 

photosynthetic rate. Marker Assisted Selection helps 

in selection of the parental genotype with the 

contrasting traits for crop improvement. Molecular 

markers includes RFLP, RAPD, SSR, AFLP, SNP 

etc. Among these, Single Nucleotide Polymorphism 

(SNP) markers can detect the diversity at a single 

base level (Disasaet al., 2016). The SSR markers 

were found to ease the transfer of important stay-

green QTL to sorghum cultivars of interest (Edema 

and Amoding, 2015). Abou-Elwafa and Shehzad 

(2018) studied the molecular diversity among 96 

sorghum lines with molecular markers. They 

reported their findings of three drought responsive 

QTLs ie., Xtxp69 on chromosome 3, SbAGA01 on 

chromosome 8 and SbAGB03 on chromosome 9. 

these genes are associated with drought resistant 

linked phenotypic traits. A collective breeding 

approaches can be screened and used to develop 

drought tolerant superior cultivars. 

 

 
Fig. 1. An overview of collective methods of crop improvement for drought stress  

 

CONCLUSION 

 

Water is one among the basic necessities to maintain 

life processes. Ultimately irrigation for crops is 

essential for food security on a global level. Climate 

changes in the present world contributes majorly for 

the abiotic stress in plants. Drought stress is normally  

considered to create a negative impact on plant 
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growth and yield. Generally, plants adopt themself to 

survive in stress conditions. Severe drought can 

result in disturbing the photosynthetic rate, leading to 

altered plant metabolism and thereby resulting in 

crop failure and yield loss. In the view of crop 

improvement, understanding the principles of 

physiological and molecular basis of drought stress is 

required. Sorghum is naturally referred as camel crop 

as it is having the high ability of drought tolerance 

and thus performs well. It is also a C4 plant of good 

photosynthesis efficiency. Drought stress affects 

sorghum at every growth s tages. So, to gain more 

understanding of stress effect on plants, detailed 

molecular study must be done at specific growth 

stages. Further research should be done on studying 

the combined abiotic stress components in sorghum 

for crop improvement. In regard to this, screening for 

new genotypes with high drought tolerance should be 

done. Many drought stress governing genes have 

been mapped and few were also discussed above and 

molecular mechanisms associated with that are also 

found. Finally to conclude, the advances that proceed 

in genetic and molecular studies and modern 

breeding strategies will enhance sorghum in 

conferring high degrees of stress tolerance. 
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