2025, Issue 2, Volume 17

UNVEILING THE ECONOMIC POTENTIAL OF MARINE ALGAE IN INDIA

Sudhir Kumar Yadav1* and Mookkan Palanisamy2

1Botanical Survey of India, CGO Complex, Sector 1, Salt Lake City, Kolkata – 700064

2Botanical Survey of India, Central National Herbarium, Botanic Garden, Howrah -711103

Email: skyadavbsic@gmail.com 

Received-30.01.2025, Revised-12.02.2025, Accepted-26.02.2025

Abstract: Algae represent a diverse group of thallophytic plants, which are simple, primitive, autotrophic, and usually aquatic in nature. Globally, ca61,145 taxa of algae have been documented taxonomically so far, which include 50,589 taxa of living algae and ca 10,556 taxa of fossil algae. In India, ca 9085 taxa of algae have been recorded, out of which ca 865 taxa are marine macro algae, popularly known as Seaweeds. The marine algae are the important components of the biodiversity and play a significant role in the food chain and sustainability of the marine ecosystems. In the recent years, these marine algal resources have gained substantial attention as a promising source of bioactive compounds with potential applications in various industries. The recent comprehensive studies on the seaweeds resources of the Indian coast revealed ca 95 taxa, (out of ca 865 taxa), consisting of 35 taxa of chlorophyta, 17 taxa of phaeophyta and 43 taxa of rhodophyta, are recognized with economic potential in various forms such as food, fodder and in various industries such as Agar-Agar, Algin, Carageenans, textiles, pharmaceuticals, leather, paint, biofertilizers, cosmetics, paper etc. These include 44 taxa as edible, 20 as fodder, 42 as industrially important, 37 as medicinal and 14 as manure (SLF). Considering these potentials, an attempt has been made to highlights the characteristic features, economic and commercial potentials of these seaweeds in India for future advancements.

Keywords: Marine algae, Carbon sequestration, Economic potential, Phycocolloides, Seaweeds, Secondary metabolites

REFERENCES

Abbassy, M.A., Marzouk, M.A., Rabea, E.I. and Abd-Elnabi A.D. (2014). Insecticidal and Fungicidal activity of Ulvalactuca Linnaeus (Chlorophyta) extracts and their fracktions. Annual Research & Review in Biology 4(13): 2252-2262.

Google Scholar

Abhishek, D., Jyoti, P., Savan, D. and Sumitra, C. (2018). Pharmacognostic standardization of Chaetomorpha antennina and Ulva lactuca, green seaweeds from Gujarat coast. J. Pharmacogn. Phytochem. 7(2): 3863-3870.

Google Scholar

Akköz, C., Arslan, D., Ünver, A., Özcan, M. and Yilmaz, B. (2011). Chemical composition, total phenolic and mineral contents of Enteromorpha intestinalis (L.) Kütz. And Cladophora glomerata (L.) Kütz. Seaweeds. J. Food Biochem. 35: 513–523.

Google Scholar

Anantharaman P. and Balasubramanian T.  (2010). Seaweeds and their potential values. In: Souv. Nat. Symp. Mar. plants. 29-44.

Google Scholar

Aung, T.H. (2018). The genus Catenella Zarnardini from Kalegauk Island, Myanmar. International Journal of Advanced Science and Research, 3(5): 30-35.

Google Scholar

Awad, N., Ibrahim, N. and Matloub, A. (2009). Phycochemical and cytotoxic activity of some marine algae. Plant Med. 75. PE73.

Google Scholar

Barbier, P., Guise, S., Huitorel, P., Amade, P., Pesando, D., Briand, C. and Peyrot V. (2001). Caulerpenyne from Caulerpa taxifolia has an antipro-liferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci. 70: 415–429.

Google Scholar

Bast, F. (2014). Seaweeds: Ancestors of Land Plants with Rich Diversity. Resonance, 19: 149–159 (2014). https://doi.org/10.1007/s12045-014-0018-x

Google Scholar

Boonprab, K. and Matsui, K. (2018). Use of Monascus sp. NP1 for bioethanol production from Cladophora glomerata. J. Appl. Phycol. 1–8.

Google Scholar

Brito, T.V., Barros, F.C.N., Silva, R.O., Genilson, J.D.J., Jose, S.C.J., Franco, A.X., Soares, P.M.G., Chaves, L.S., Abreu, C.M.W.S., Paula, R.C.M., Souza, M.H.L.P., Freitas, A.L.P. and Barbosa, A.L.R. (2016). Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-indiced intestinal damage in rats. Carbohydrate polymers, 151: 957-964.

Google Scholar

BSI (2024).Plant Discoveries (including algae, fungi and microbes) new genera, species and new records, 2023. Botanical Survey of India, Kolkata.

Google Scholar

Centeno, P.O.R., Ballantine, D.L. and Gerwick, W.H. (1996). Dynamics of antibacterial activity in three species of Caribbean marine algae as a function of habitat and life history. Hydrobiologia 326, 457–462. https://doi.org/10.1007/BF00047846.

Google Scholar

Chakraborty, K., Joseph, D. and Praveen, N.K. (2015). Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. J Food Sci Technol. 52 (4):1924-1935.

Google Scholar

Chan, Y.Y., Kim, K.H. and Cheah, S.H. (2011). Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol. 137:1183–8.

Google Scholar

Chapman, V.J. (1970). Seaweeds and Their Uses. Chapman & Hall. London, 334.

Google Scholar

Chapman, V.J. and Chapman, D.J. (1980). Seaweed as Animal Fodder, Manure and for Energy. In: Seaweeds and their Uses. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5806-7_2

Google Scholar

Chen, J., Li, H., Zhao, Z., Xia, X., Li, B., Zhang, J. and Yan, X. (2018). Diterpenes from the marine algae of the genus Dictyota. Mar. Drugs; 16: 1-25.

Google Scholar

Chennubhotla, V.S.K., Rao, M.U. and Rao, K.S. (2013). Commercial importance of marine macro algae. Seaweed Res. Utiln., 35 (1&2): 118-128.

Google Scholar

Chennubhotla, V.S.K., Rao, M.U. and Rao, K.S. (2013). Exploitation of marine algae in Indo-Pacific region. Seaweed Res. Utiln.35 (1&2): 1-7.

Google Scholar

Contreras, N., Alvíz, A., Torres, J. and Uribe, S. (2019). Bryopsis spp.: Generalities, Chemical and Biological Activities. Pharmacog Rev. 13(26):63-70.

Google Scholar

Del Río, P.G., Joana, S., Gomes, D.C., Rocha, M.R., Aloia, R., Gil, G. and Lucília, D. (2020). Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 299: 122613. https://doi.org/10.1016/j.biortech.2019.122613.

Google Scholar

Dias, A.P.S., Bruna, R., Francisco, S., Rui, G.S. and Tânia, F. (2023). Overview on biofuels production in a seaweed biorefinery. Science of the Total Environment. 884: 2023, 163714. https://doi.org/10.1016/j.scitotenv.2023.163714.

Google Scholar

Duarte, C.M., Bruhn, A. and Krause-Jensen, D. (2021).A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 1–9.

Google Scholar

Duarte, C.M., Gattuso, J.P., Hancke, K., Gundersen, H., Filbee-Dexter, K., Pedersen, M.F., Middelburg, J.J., Burrows, M.T., Krumhansl, K.A. and Wernberg, T. (2022). Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 31, 1422–1439.

Google Scholar

Esmaeili, A. and Khakpoor, M. (2012). Biological activities and chemical composition of solvent extracts of Stoechospermum marginatum (C. Agardh). Acta Biochimica Polonica, 59 (4): 581–585.

Google Scholar

Fantonalgo, R.N. (2018). Preliminary Study on Biogeography and Diversity of Red Alga Halymenia in Manila Bay, Philippines. Annal. Geograph. Stud.1 (1): 1-10.

Google Scholar

Felício, R.P., Gabriel, B., Oliveira, A.L., Erbert, C., Conti, R.P., Monica, T., Furtado, N. Ferreira, A.J.C., Elthon, G., Costa-Lotufo, L.V., Young, M.C., Yokoya, M., Nair S. and Debonsi, H.M. (2015). Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev. bras. farmacogn.25(6), 641-650. https://doi.org/10.1016/j.bjp.2015.08.003.

Google Scholar

Fischel, J.L., Lemee, R., Formento, P., Caldani, C., Moll, J.L., Pesando, D., Meinesz, A., Grelier, P., Pietra, F., Guerriero, A. and Milano, G. (1995). Cell growth inhibitory effects of caulerpenyne, a sesqfuiterpenoid from the marine alga Caulerpa taxifolia. Anticancer Res. 15: 2155– 2160.

Google Scholar

Ganesan, M., Trivedi, N., Gupta, V., Madhav, S., Reddy, C.R.K. and Levine, I.A. (2019). Seaweed resources in India – current status of diversity and cultivation: prospects and challenges, Bot. Mar. 62(5), 463-482. Doi: https://doi.org/10.1515/bot-2018-0056.

Google Scholar

Guiry, M.D. (2024). How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing. Journal of Phycology, 60 (2):214-228. doi: 10.1111/jpy.13431. Epub 2024 Jan 21. PMID: 38245909.

Google Scholar

Haniya, A.M.K., Sweety, F.Y., Kothari, S. and Mahalakshmi, K. (2015). Antibacterial activity of Chaetomorpha litorea (Harvey) against isolated fish bacteria. Indian J. Mar. Sci., 44 (3): 416-420.

Google Scholar

Hannon, C., Officer, R.A., Dorven, J.L. and Chamberlain, J. (2014). Culture methods of live algal feeds for European aquaculture: optimising culture conditions for Ulvellalens. Aquacult Int.  DOI 10.1007/s10499-014-9784-4.

Google Scholar

Immanuel, R. and Subramanian, S. K. (1999). Effect of fresh extract and seaweed liquid fertilizers on some cereals and millets. Seaweed Res. Utiln. 21: 91-94.

Google Scholar

Iyengar, M.O.P. (1927). Krusadai Island Flora. Bull. Madras Govt. Mus. N.S. Nat. Hist. Sect., 1(1): 185–188.

Google Scholar

Jha, B., Reddy, C.R.K., Thakur, M.K. and Rao, M.U. (2009). Seaweeds of India: The Diversity and Distribution of Seaweeds in Gujarat Coast. CSMCRI, Bhavnagar.1-215.

Google Scholar

Kaeffer, B., Bénard, C., Lahaye, M., Blottière, H.M. and Cherbut, C. (1999). Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial cells, Plant Med., 65: 527–531.

Google Scholar

Kaliaperumal, N., Kaliamuthu, S. and Ramalingam, J.R. (1995). Economically Important Seaweeds. CMFRI special publication, 62: 1–35.

Google Scholar

Kalimuthu, S., Chennubhotla, V. S. K. and Kaliaperumal, N. (1987). Economic important seaweeds of Inida. Seaweed Research and Utilization in India. CMFRI Bulletin. 41: 99 pp.

Google Scholar

Karthik T. and Jayasri, M.A. (2023). Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (Mung bean). Journal of Agriculture and Food Research, 14: 100748. https://doi.org/10.1016/j.jafr.2023.100748.

Google Scholar

Kavale, M.G., Kazi, M.A., Bagal, P.U., Singh, V.V. and Behera, D.P. (2018). Food value of Pyropia vietnamensis (Bangiales, Rhodophyta) from India. Indian J. Mar. Sci. 47 (2): 402–408.

Google Scholar

Khambhaty, Y., Mody, K., Gandhi, M.R., Thampy, S., Maiti, P., Bhrahmbhatt, H., Eswaran, K. and Ghosh, P.K. (2012). Kappaphycus alvarezii as a source of bioethanol. Biores. Techn. 103 (1): 180–185.

Google Scholar

Kotteswari, M., Shanthi, N., Elamvaluthi, M. and Murugesan S. (2015). Antibacterial activities of Caulerpa scalpelliformis (R. Brown ex Turner) C.Agardh from the Gulf of Mannar south east coast of India. European J. Pharm. Med. Research, 2(4), 900-907.

Google Scholar

Krause-Jensen, D. and Duarte, C. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geosci., 9, 737–742. https://doi.org/10.1038/ngeo2790.

Google Scholar

Krause-Jensen, D., Lavery, P., Serrano, O., Marba, N., Masque, P. and Duarte, C.M., (2018). Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biol. Lett., 14.

Google Scholar

Li, Y., Siqi, S., Xiaowei, P., Yuzhe, Y., Fei, Z., Shouyu, Z. and Nianjun, X. (2018). Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China. Sustainability, 10, 2158; doi:10.3390/su10072158.

Google Scholar

Lideman, G., Nishihara, N., Tadahide, N. and Terada, R. (2011). In Vitro Growth and Photosynthesis of Three Edible Seaweeds, Betaphycus gelatinus, Eucheuma serra and Meristotheca papulosa (Solieriaceae, Rhodophyta). Aquaculture Sci., 59 (4): 563-571.

Google Scholar

Lingakumar, K., Jeyaprakash, R., Manimuthu, C. and Haribaskar, A. (2002). Gracilariaedulis– an effective alternative source as a growth regulator for Zea mays and Phaseolus mungo. Seaweed Res. Utiln. 24: 117-123.

Google Scholar

Manilal, A., Selvin, J., Sujith, S. and Panikkar, M.V.N. (2012). Evaluation of therapeutic efficacy of Indian Green Alga, Acrosiphonia orientalis (J. Agardh) in the treatment of vibriosis in Penaeus monodon. Thalassas, 28 (1): 33-46.

Google Scholar

Manilal, A., Sujith, S., Selvin, J., Kiran, G.S. and Shakir, C. (2009). In vivo Antiviral activity of Polysaccharide from the Indian Green Alga, Acrosiphonia orientalis (J. Agardh): Potential Implication in Shrimp Disease Management. World J. Fish Mar. Sci., 1(4): 278–282.

Google Scholar

Manilal, A., Sujith, S., Subarathnam, B., Kiran, G.S., Selvin, J., Shakir, C. and Lipton. A.P. (2010). Bioactivity of the Red algae Asparagopsis taxiformis collected from the south western coast of Kerala. Brazilian J. Ocean. 58 (2): 93–100.

Google Scholar

Mantri, V.A., Kavale, M.G. and Kazi, M.A. (2019). Seaweed Biodiversity of India: Reviewing Current Knowledge to Identify Gaps, Challenges, and Opportunities. Diversity, 12(1): 13. doi:10.3390/d12010013.

Google Scholar

Masami, G.O., Usui, I.Y. and Urano, N. (2008). Ethanol production from the water hyacinth Eichhorniacrassipes by yeast isolated from various hydrospheres. Afr. J. Microbiol. Res. 2, 110–113.

Google Scholar

McHugh, D. J. (2003). A guide to the seaweed industry. FAO Fisheries Tech. Paper: 441, 105.

Google Scholar

Michalak, I. and Mahrose, K. (2020). Seaweeds, Intact and Processed, as a Valuable Component of Poultry Feeds. J. Marine Sci. Eng. 8(8): 620.

Google Scholar

Mohanty, D., Adhikary, S.P. and G.N. Chatopadhyay (2013). Seaweed liquid fertilizer (SLF) and its role in agriculture productivity. The Ecoscan. Special issue, Vol. III: 23-26.

Google Scholar

Munir, M., Qureshi, R., Bibi, M. and Khan, A.M. (2019). Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Research, 39, 101476. doi: 10.1016/j.algal.

Google Scholar

Nagula, K., Sati, H., Trivedi, N. and Reddy, C.R.K. (2022). Biofuels and bioproducts from seaweeds. Editor(s): Deepak Tuli, Sangita Kasture, Arindam Kuila, Advanced Biofuel Technologies, Elsevier. 431-455. https://doi.org/10.1016/B978-0-323-88427-3.00012-X.

Google Scholar

Pati, M.P., Sharma, S.D., Nayak, L. and Panda, C.R. (2016). Uses of seaweed and its application to human welfare: a review. International J. Pharm. Pharm. Sci., 8 (10): 12-20.

Google Scholar

Pereira, N. and Almeida, M.R. (2014). A preliminary checklist of marine algae from the Coast of Goa. Indian J. Geo–Mar. Sci., 42 (4): 655–665.

Google Scholar

Pramitha, V.S. and Lipton, A.P. (2013). Antibiotic potentials of red macroalgae Hypneamusciformis (Wulfen) Lamouroux and Hypnea valentiae (Turner) Mont. Seaweed Res. Utiln. 35 (1&2):95-107.

Google Scholar

Priya, P., Murugesan, S. Kotteswari, M., Shanthi, N. and Sivamurugan, V. (2018). Antibacterial activity of marine red alga Grateloupia lithophila Boergesen. International J. Pharmacy Biol. Sciences, 8(3):1125-1129.

Google Scholar

Ramachandra, T.V. and Deepthi, H. (2016). Bioethanol prospects of Algae in Central West Coast of India. Synergy with Energy, 51-59. Saket Publishers.

Google Scholar

Rao, P.S.N. and Gupta, R.K. (2015).Algae of India, Vol 3: A checklist of Indian Marine Algae (Excluding Diatoms & Dinoflagellates).Botanical Survey of India, Kolkata.pp.1–93.

Google Scholar

Reddy, P., Das, A. and Verma, A. (2024). Seaweed as a functional feed supplement in animal diet-A review. The Indian Journal of Animal Sciences, 94, 291-300. 10.56093/ijans.v94i4.144829.

Google Scholar

Ross, F.W.R., Philip, W. B., Karen, F.D., Kenta, W., Alejandra, O., Dorte, K.J., Catherine, L., Calvyn, F.A.S., Lennart, T.B., Carlos, M. D., Oscar, S., John, B., Patrick, T. and Peter, I. M. (2023). Potential role of seaweeds in climate change mitigation. Science of The Total Environment. 885. 163699. 10.1016/j.scitotenv.2023.163699.

Google Scholar

Roy, S. and Anantharaman, P. (2018). Biosynthesis of Silver Nanoparticle by Amphiroa anceps (Lamarck) Decaisne and Its Biomedical and Ecological Implications. J. Nanomed Nanotechnol. 9: 492. doi: 10.4172/2157-7439.1000492.

Google Scholar

Sangeetha, P., Babu, S. and Rengasamy, R. (2011). Potential of green alga Chaetomorpha litorea (Harvey) for biogas production. International J. Curr. Sci. 24-29.

Google Scholar

Sethi, S.K. and Adhikary, S. P. (2008). Effect of seaweed liquid fertilizer on vegetative growth and yield of black gram, brinjal and tomato. Seaweed Res. Utiln. 30: 241-248.

Google Scholar

Shahnaz, L., Shehnaz, H. and Haider, A. (2019). Fourier transform infrared (ft-ir) spectroscopic investigations of four agarophytes from northern Arabian sea. Bangladesh J. Bot. 48(4): 925-932.

Google Scholar

Shanmugam, M., Mody, K.H., Ramavat, B.K., Murthy, A., Sai, K. and Siddhanta, A.K. (2002). Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian J. Mar. Science, 31(1): 33-38.

Google Scholar

Sharmila, S. and Rebecca, L. (2012). GC-MS analysis of esters of fatty acid present in biodiesel produced from Cladophora vagabunda. J. Chem. Pharm. Res. 4: 4883–4887.

Google Scholar

Shynu, S.P., Shibu, S. and Jayaprakas, V. (2014). The economically valuable seaweeds of Thirumullavaram, southwest coast of Kerala. J. Aquat. BioI. Fish. 2(1): 133–237.

Google Scholar

Siddhanta, A.K., Shanmugam, M., Mody, K.H., Goswami, A.M. and Ramavat, B.K. (1999). Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: chemical composition and blood anticoagulant activity. Inter. J. Biol. Macromolecules. 1999 Nov; 26 (2-3):151-154. DOI: 10.1016/s0141-8130(99)00079-3.

Google Scholar

Simpi, C.C., Nagathan, C.V., Karajgi, S.R. and Kalyane, N.V. (2013). Evaluation of marine brown algae Sargassum ilicifolium extract for analgesic and anti-inflammatory activity. Phcog. Res. 5 (3):146-149.

Google Scholar

Smit, A.J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 16: 245 – 262.

Google Scholar

Sobha, V., Santhosh, S., Ghita, G. and Valsalakoijumar, E. (2008). Food products from seaweeds of south Kerala coast. Seaweed Res. Utiln. 30(1&2): 199–2003.

Google Scholar

Soe, H.U., San, T.T., Aye, M.S. and Ni, N.W. (1997). A summary report on the seaweeds and seagrasses of the Myeik (Mergui) Archipelago. Tech. Rep., 1-7.

Google Scholar

Stabili, L., Acquaviva, M.I., Angile, F., Cavallo, R.A., Cecere, E., Del, C.L., Fanizzi, F.P., Gerardi, C., Narracci, M. and Petrocelli, A. (2019). Screening of Chaetomorpha linum Lipidic Extract as a New Potential Source of Bioactive Compounds. Mar. Drugs,17, 313.

Google Scholar

Surayot, U., Lee, J.H., Kanongnuch, C., Peerapornpisal, Y., Park, W. and You, S. (2016). Structural characterization of sulfated arabinans extracted from Cladophoraglomerata Kützing and their macrophage activation. Biosci. Biotechnol. Biochem. 80: 972–982.

Google Scholar

Takemoto, T. and Daigo, K. (1958). Constituents of Chondria armata and their pharmacological effects. Chem. Pharmaceut. Bull. 6: 578-580. 

Google Scholar

Taskin, E., Ozturk, M., Taskin, E. and Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African J. Biotech. 6 (24): 2746-2751.

Google Scholar

Troell, M., Henriksson, P.J., Buschmann, A., Chopin, T. and Quahe, S. (2022). Farming the Ocean seaweeds as a Quick Fix for the Climate? Taylor & Francis, pp. 1–11.

Google Scholar

Tseng, C.K. (2004). The past, present and future of phycology in China. Hydrobiologia, 512: 11–20.

Google Scholar

Xu, X., Kim, J., Yuri, O and Park, J. (2014). Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresource technology. 169 C. 455-461. 10.1016/j.biortech.2014.07.015.

Google Scholar

Yadav, S.K. (2022). Seaweeds: Are these weeds or resources? International Journal of Bioresource Science,9(2): 69-73.

Google Scholar

Yong, W.T.L., Thien, V.Y., Rennielyn, R. and Kenneth, F.R. (2022). Seaweed: A potential climate change solution. Renewable and Sustainable Energy Reviews 159: 2022. 112222. https://doi.org/10.1016/j.rser.2022.112222.

Google Scholar

Yuvaraj, N., Kanmani, P., Satishkumar, R., Paari, K., Pattukumar, V. and Arul V. (2011).Extraction, purification and partial characterization of Cladophora glomerata against multidrug resistant human pathogen Acinetobacter baumannii and fish pathogens. World J Fish Mar Sci., 3: 51–57.

Google Scholar

Zhao, C., Yang, C. and Liu, B. (2016). Biological activities of green macroalgae Enteromorpha prolifera for potential applications. MOJ Food Process. Technol., 2(5):153‒155.

Google Scholar