Sudhir Kumar Yadav1* and Mookkan Palanisamy2
1Botanical Survey of India, CGO Complex, Sector 1, Salt Lake City, Kolkata – 700064
2Botanical Survey of India, Central National Herbarium, Botanic Garden, Howrah -711103
Email: skyadavbsic@gmail.com
Received-30.01.2025, Revised-12.02.2025, Accepted-26.02.2025
Abstract: Algae represent a diverse group of thallophytic plants, which are simple, primitive, autotrophic, and usually aquatic in nature. Globally, ca61,145 taxa of algae have been documented taxonomically so far, which include 50,589 taxa of living algae and ca 10,556 taxa of fossil algae. In India, ca 9085 taxa of algae have been recorded, out of which ca 865 taxa are marine macro algae, popularly known as Seaweeds. The marine algae are the important components of the biodiversity and play a significant role in the food chain and sustainability of the marine ecosystems. In the recent years, these marine algal resources have gained substantial attention as a promising source of bioactive compounds with potential applications in various industries. The recent comprehensive studies on the seaweeds resources of the Indian coast revealed ca 95 taxa, (out of ca 865 taxa), consisting of 35 taxa of chlorophyta, 17 taxa of phaeophyta and 43 taxa of rhodophyta, are recognized with economic potential in various forms such as food, fodder and in various industries such as Agar-Agar, Algin, Carageenans, textiles, pharmaceuticals, leather, paint, biofertilizers, cosmetics, paper etc. These include 44 taxa as edible, 20 as fodder, 42 as industrially important, 37 as medicinal and 14 as manure (SLF). Considering these potentials, an attempt has been made to highlights the characteristic features, economic and commercial potentials of these seaweeds in India for future advancements.
Keywords: Marine algae, Carbon sequestration, Economic potential, Phycocolloides, Seaweeds, Secondary metabolites
REFERENCES
Abbassy, M.A., Marzouk, M.A., Rabea, E.I. and Abd-Elnabi A.D. (2014). Insecticidal and Fungicidal activity of Ulvalactuca Linnaeus (Chlorophyta) extracts and their fracktions. Annual Research & Review in Biology 4(13): 2252-2262.
Abhishek, D., Jyoti, P., Savan, D. and Sumitra, C. (2018). Pharmacognostic standardization of Chaetomorpha antennina and Ulva lactuca, green seaweeds from Gujarat coast. J. Pharmacogn. Phytochem. 7(2): 3863-3870.
Akköz, C., Arslan, D., Ünver, A., Özcan, M. and Yilmaz, B. (2011). Chemical composition, total phenolic and mineral contents of Enteromorpha intestinalis (L.) Kütz. And Cladophora glomerata (L.) Kütz. Seaweeds. J. Food Biochem. 35: 513–523.
Anantharaman P. and Balasubramanian T. (2010). Seaweeds and their potential values. In: Souv. Nat. Symp. Mar. plants. 29-44.
Aung, T.H. (2018). The genus Catenella Zarnardini from Kalegauk Island, Myanmar. International Journal of Advanced Science and Research, 3(5): 30-35.
Awad, N., Ibrahim, N. and Matloub, A. (2009). Phycochemical and cytotoxic activity of some marine algae. Plant Med. 75. PE73.
Barbier, P., Guise, S., Huitorel, P., Amade, P., Pesando, D., Briand, C. and Peyrot V. (2001). Caulerpenyne from Caulerpa taxifolia has an antipro-liferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci. 70: 415–429.
Bast, F. (2014). Seaweeds: Ancestors of Land Plants with Rich Diversity. Resonance, 19: 149–159 (2014). https://doi.org/10.1007/s12045-014-0018-x
Boonprab, K. and Matsui, K. (2018). Use of Monascus sp. NP1 for bioethanol production from Cladophora glomerata. J. Appl. Phycol. 1–8.
Brito, T.V., Barros, F.C.N., Silva, R.O., Genilson, J.D.J., Jose, S.C.J., Franco, A.X., Soares, P.M.G., Chaves, L.S., Abreu, C.M.W.S., Paula, R.C.M., Souza, M.H.L.P., Freitas, A.L.P. and Barbosa, A.L.R. (2016). Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-indiced intestinal damage in rats. Carbohydrate polymers, 151: 957-964.
BSI (2024).Plant Discoveries (including algae, fungi and microbes) new genera, species and new records, 2023. Botanical Survey of India, Kolkata.
Centeno, P.O.R., Ballantine, D.L. and Gerwick, W.H. (1996). Dynamics of antibacterial activity in three species of Caribbean marine algae as a function of habitat and life history. Hydrobiologia 326, 457–462. https://doi.org/10.1007/BF00047846.
Chakraborty, K., Joseph, D. and Praveen, N.K. (2015). Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. J Food Sci Technol. 52 (4):1924-1935.
Chan, Y.Y., Kim, K.H. and Cheah, S.H. (2011). Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol. 137:1183–8.
Chapman, V.J. (1970). Seaweeds and Their Uses. Chapman & Hall. London, 334.
Chapman, V.J. and Chapman, D.J. (1980). Seaweed as Animal Fodder, Manure and for Energy. In: Seaweeds and their Uses. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5806-7_2
Chen, J., Li, H., Zhao, Z., Xia, X., Li, B., Zhang, J. and Yan, X. (2018). Diterpenes from the marine algae of the genus Dictyota. Mar. Drugs; 16: 1-25.
Chennubhotla, V.S.K., Rao, M.U. and Rao, K.S. (2013). Commercial importance of marine macro algae. Seaweed Res. Utiln., 35 (1&2): 118-128.
Chennubhotla, V.S.K., Rao, M.U. and Rao, K.S. (2013). Exploitation of marine algae in Indo-Pacific region. Seaweed Res. Utiln.35 (1&2): 1-7.
Contreras, N., Alvíz, A., Torres, J. and Uribe, S. (2019). Bryopsis spp.: Generalities, Chemical and Biological Activities. Pharmacog Rev. 13(26):63-70.
Del Río, P.G., Joana, S., Gomes, D.C., Rocha, M.R., Aloia, R., Gil, G. and Lucília, D. (2020). Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 299: 122613. https://doi.org/10.1016/j.biortech.2019.122613.
Dias, A.P.S., Bruna, R., Francisco, S., Rui, G.S. and Tânia, F. (2023). Overview on biofuels production in a seaweed biorefinery. Science of the Total Environment. 884: 2023, 163714. https://doi.org/10.1016/j.scitotenv.2023.163714.
Duarte, C.M., Bruhn, A. and Krause-Jensen, D. (2021).A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 1–9.
Duarte, C.M., Gattuso, J.P., Hancke, K., Gundersen, H., Filbee-Dexter, K., Pedersen, M.F., Middelburg, J.J., Burrows, M.T., Krumhansl, K.A. and Wernberg, T. (2022). Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 31, 1422–1439.
Esmaeili, A. and Khakpoor, M. (2012). Biological activities and chemical composition of solvent extracts of Stoechospermum marginatum (C. Agardh). Acta Biochimica Polonica, 59 (4): 581–585.
Fantonalgo, R.N. (2018). Preliminary Study on Biogeography and Diversity of Red Alga Halymenia in Manila Bay, Philippines. Annal. Geograph. Stud.1 (1): 1-10.
Felício, R.P., Gabriel, B., Oliveira, A.L., Erbert, C., Conti, R.P., Monica, T., Furtado, N. Ferreira, A.J.C., Elthon, G., Costa-Lotufo, L.V., Young, M.C., Yokoya, M., Nair S. and Debonsi, H.M. (2015). Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev. bras. farmacogn.25(6), 641-650. https://doi.org/10.1016/j.bjp.2015.08.003.
Fischel, J.L., Lemee, R., Formento, P., Caldani, C., Moll, J.L., Pesando, D., Meinesz, A., Grelier, P., Pietra, F., Guerriero, A. and Milano, G. (1995). Cell growth inhibitory effects of caulerpenyne, a sesqfuiterpenoid from the marine alga Caulerpa taxifolia. Anticancer Res. 15: 2155– 2160.
Ganesan, M., Trivedi, N., Gupta, V., Madhav, S., Reddy, C.R.K. and Levine, I.A. (2019). Seaweed resources in India – current status of diversity and cultivation: prospects and challenges, Bot. Mar. 62(5), 463-482. Doi: https://doi.org/10.1515/bot-2018-0056.
Guiry, M.D. (2024). How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing. Journal of Phycology, 60 (2):214-228. doi: 10.1111/jpy.13431. Epub 2024 Jan 21. PMID: 38245909.
Haniya, A.M.K., Sweety, F.Y., Kothari, S. and Mahalakshmi, K. (2015). Antibacterial activity of Chaetomorpha litorea (Harvey) against isolated fish bacteria. Indian J. Mar. Sci., 44 (3): 416-420.
Hannon, C., Officer, R.A., Dorven, J.L. and Chamberlain, J. (2014). Culture methods of live algal feeds for European aquaculture: optimising culture conditions for Ulvellalens. Aquacult Int. DOI 10.1007/s10499-014-9784-4.
Immanuel, R. and Subramanian, S. K. (1999). Effect of fresh extract and seaweed liquid fertilizers on some cereals and millets. Seaweed Res. Utiln. 21: 91-94.
Iyengar, M.O.P. (1927). Krusadai Island Flora. Bull. Madras Govt. Mus. N.S. Nat. Hist. Sect., 1(1): 185–188.
Jha, B., Reddy, C.R.K., Thakur, M.K. and Rao, M.U. (2009). Seaweeds of India: The Diversity and Distribution of Seaweeds in Gujarat Coast. CSMCRI, Bhavnagar.1-215.
Kaeffer, B., Bénard, C., Lahaye, M., Blottière, H.M. and Cherbut, C. (1999). Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial cells, Plant Med., 65: 527–531.
Kaliaperumal, N., Kaliamuthu, S. and Ramalingam, J.R. (1995). Economically Important Seaweeds. CMFRI special publication, 62: 1–35.
Kalimuthu, S., Chennubhotla, V. S. K. and Kaliaperumal, N. (1987). Economic important seaweeds of Inida. Seaweed Research and Utilization in India. CMFRI Bulletin. 41: 99 pp.
Karthik T. and Jayasri, M.A. (2023). Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (Mung bean). Journal of Agriculture and Food Research, 14: 100748. https://doi.org/10.1016/j.jafr.2023.100748.
Kavale, M.G., Kazi, M.A., Bagal, P.U., Singh, V.V. and Behera, D.P. (2018). Food value of Pyropia vietnamensis (Bangiales, Rhodophyta) from India. Indian J. Mar. Sci. 47 (2): 402–408.
Khambhaty, Y., Mody, K., Gandhi, M.R., Thampy, S., Maiti, P., Bhrahmbhatt, H., Eswaran, K. and Ghosh, P.K. (2012). Kappaphycus alvarezii as a source of bioethanol. Biores. Techn. 103 (1): 180–185.
Kotteswari, M., Shanthi, N., Elamvaluthi, M. and Murugesan S. (2015). Antibacterial activities of Caulerpa scalpelliformis (R. Brown ex Turner) C.Agardh from the Gulf of Mannar south east coast of India. European J. Pharm. Med. Research, 2(4), 900-907.
Krause-Jensen, D. and Duarte, C. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geosci., 9, 737–742. https://doi.org/10.1038/ngeo2790.
Krause-Jensen, D., Lavery, P., Serrano, O., Marba, N., Masque, P. and Duarte, C.M., (2018). Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biol. Lett., 14.
Li, Y., Siqi, S., Xiaowei, P., Yuzhe, Y., Fei, Z., Shouyu, Z. and Nianjun, X. (2018). Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China. Sustainability, 10, 2158; doi:10.3390/su10072158.
Lideman, G., Nishihara, N., Tadahide, N. and Terada, R. (2011). In Vitro Growth and Photosynthesis of Three Edible Seaweeds, Betaphycus gelatinus, Eucheuma serra and Meristotheca papulosa (Solieriaceae, Rhodophyta). Aquaculture Sci., 59 (4): 563-571.
Lingakumar, K., Jeyaprakash, R., Manimuthu, C. and Haribaskar, A. (2002). Gracilariaedulis– an effective alternative source as a growth regulator for Zea mays and Phaseolus mungo. Seaweed Res. Utiln. 24: 117-123.
Manilal, A., Selvin, J., Sujith, S. and Panikkar, M.V.N. (2012). Evaluation of therapeutic efficacy of Indian Green Alga, Acrosiphonia orientalis (J. Agardh) in the treatment of vibriosis in Penaeus monodon. Thalassas, 28 (1): 33-46.
Manilal, A., Sujith, S., Selvin, J., Kiran, G.S. and Shakir, C. (2009). In vivo Antiviral activity of Polysaccharide from the Indian Green Alga, Acrosiphonia orientalis (J. Agardh): Potential Implication in Shrimp Disease Management. World J. Fish Mar. Sci., 1(4): 278–282.
Manilal, A., Sujith, S., Subarathnam, B., Kiran, G.S., Selvin, J., Shakir, C. and Lipton. A.P. (2010). Bioactivity of the Red algae Asparagopsis taxiformis collected from the south western coast of Kerala. Brazilian J. Ocean. 58 (2): 93–100.
Mantri, V.A., Kavale, M.G. and Kazi, M.A. (2019). Seaweed Biodiversity of India: Reviewing Current Knowledge to Identify Gaps, Challenges, and Opportunities. Diversity, 12(1): 13. doi:10.3390/d12010013.
Masami, G.O., Usui, I.Y. and Urano, N. (2008). Ethanol production from the water hyacinth Eichhorniacrassipes by yeast isolated from various hydrospheres. Afr. J. Microbiol. Res. 2, 110–113.
McHugh, D. J. (2003). A guide to the seaweed industry. FAO Fisheries Tech. Paper: 441, 105.
Michalak, I. and Mahrose, K. (2020). Seaweeds, Intact and Processed, as a Valuable Component of Poultry Feeds. J. Marine Sci. Eng. 8(8): 620.
Mohanty, D., Adhikary, S.P. and G.N. Chatopadhyay (2013). Seaweed liquid fertilizer (SLF) and its role in agriculture productivity. The Ecoscan. Special issue, Vol. III: 23-26.
Munir, M., Qureshi, R., Bibi, M. and Khan, A.M. (2019). Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Research, 39, 101476. doi: 10.1016/j.algal.
Nagula, K., Sati, H., Trivedi, N. and Reddy, C.R.K. (2022). Biofuels and bioproducts from seaweeds. Editor(s): Deepak Tuli, Sangita Kasture, Arindam Kuila, Advanced Biofuel Technologies, Elsevier. 431-455. https://doi.org/10.1016/B978-0-323-88427-3.00012-X.
Pati, M.P., Sharma, S.D., Nayak, L. and Panda, C.R. (2016). Uses of seaweed and its application to human welfare: a review. International J. Pharm. Pharm. Sci., 8 (10): 12-20.
Pereira, N. and Almeida, M.R. (2014). A preliminary checklist of marine algae from the Coast of Goa. Indian J. Geo–Mar. Sci., 42 (4): 655–665.
Pramitha, V.S. and Lipton, A.P. (2013). Antibiotic potentials of red macroalgae Hypneamusciformis (Wulfen) Lamouroux and Hypnea valentiae (Turner) Mont. Seaweed Res. Utiln. 35 (1&2):95-107.
Priya, P., Murugesan, S. Kotteswari, M., Shanthi, N. and Sivamurugan, V. (2018). Antibacterial activity of marine red alga Grateloupia lithophila Boergesen. International J. Pharmacy Biol. Sciences, 8(3):1125-1129.
Ramachandra, T.V. and Deepthi, H. (2016). Bioethanol prospects of Algae in Central West Coast of India. Synergy with Energy, 51-59. Saket Publishers.
Rao, P.S.N. and Gupta, R.K. (2015).Algae of India, Vol 3: A checklist of Indian Marine Algae (Excluding Diatoms & Dinoflagellates).Botanical Survey of India, Kolkata.pp.1–93.
Reddy, P., Das, A. and Verma, A. (2024). Seaweed as a functional feed supplement in animal diet-A review. The Indian Journal of Animal Sciences, 94, 291-300. 10.56093/ijans.v94i4.144829.
Ross, F.W.R., Philip, W. B., Karen, F.D., Kenta, W., Alejandra, O., Dorte, K.J., Catherine, L., Calvyn, F.A.S., Lennart, T.B., Carlos, M. D., Oscar, S., John, B., Patrick, T. and Peter, I. M. (2023). Potential role of seaweeds in climate change mitigation. Science of The Total Environment. 885. 163699. 10.1016/j.scitotenv.2023.163699.
Roy, S. and Anantharaman, P. (2018). Biosynthesis of Silver Nanoparticle by Amphiroa anceps (Lamarck) Decaisne and Its Biomedical and Ecological Implications. J. Nanomed Nanotechnol. 9: 492. doi: 10.4172/2157-7439.1000492.
Sangeetha, P., Babu, S. and Rengasamy, R. (2011). Potential of green alga Chaetomorpha litorea (Harvey) for biogas production. International J. Curr. Sci. 24-29.
Sethi, S.K. and Adhikary, S. P. (2008). Effect of seaweed liquid fertilizer on vegetative growth and yield of black gram, brinjal and tomato. Seaweed Res. Utiln. 30: 241-248.
Shahnaz, L., Shehnaz, H. and Haider, A. (2019). Fourier transform infrared (ft-ir) spectroscopic investigations of four agarophytes from northern Arabian sea. Bangladesh J. Bot. 48(4): 925-932.
Shanmugam, M., Mody, K.H., Ramavat, B.K., Murthy, A., Sai, K. and Siddhanta, A.K. (2002). Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian J. Mar. Science, 31(1): 33-38.
Sharmila, S. and Rebecca, L. (2012). GC-MS analysis of esters of fatty acid present in biodiesel produced from Cladophora vagabunda. J. Chem. Pharm. Res. 4: 4883–4887.
Shynu, S.P., Shibu, S. and Jayaprakas, V. (2014). The economically valuable seaweeds of Thirumullavaram, southwest coast of Kerala. J. Aquat. BioI. Fish. 2(1): 133–237.
Siddhanta, A.K., Shanmugam, M., Mody, K.H., Goswami, A.M. and Ramavat, B.K. (1999). Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: chemical composition and blood anticoagulant activity. Inter. J. Biol. Macromolecules. 1999 Nov; 26 (2-3):151-154. DOI: 10.1016/s0141-8130(99)00079-3.
Simpi, C.C., Nagathan, C.V., Karajgi, S.R. and Kalyane, N.V. (2013). Evaluation of marine brown algae Sargassum ilicifolium extract for analgesic and anti-inflammatory activity. Phcog. Res. 5 (3):146-149.
Smit, A.J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 16: 245 – 262.
Sobha, V., Santhosh, S., Ghita, G. and Valsalakoijumar, E. (2008). Food products from seaweeds of south Kerala coast. Seaweed Res. Utiln. 30(1&2): 199–2003.
Soe, H.U., San, T.T., Aye, M.S. and Ni, N.W. (1997). A summary report on the seaweeds and seagrasses of the Myeik (Mergui) Archipelago. Tech. Rep., 1-7.
Stabili, L., Acquaviva, M.I., Angile, F., Cavallo, R.A., Cecere, E., Del, C.L., Fanizzi, F.P., Gerardi, C., Narracci, M. and Petrocelli, A. (2019). Screening of Chaetomorpha linum Lipidic Extract as a New Potential Source of Bioactive Compounds. Mar. Drugs,17, 313.
Surayot, U., Lee, J.H., Kanongnuch, C., Peerapornpisal, Y., Park, W. and You, S. (2016). Structural characterization of sulfated arabinans extracted from Cladophoraglomerata Kützing and their macrophage activation. Biosci. Biotechnol. Biochem. 80: 972–982.
Takemoto, T. and Daigo, K. (1958). Constituents of Chondria armata and their pharmacological effects. Chem. Pharmaceut. Bull. 6: 578-580.
Taskin, E., Ozturk, M., Taskin, E. and Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African J. Biotech. 6 (24): 2746-2751.
Troell, M., Henriksson, P.J., Buschmann, A., Chopin, T. and Quahe, S. (2022). Farming the Ocean seaweeds as a Quick Fix for the Climate? Taylor & Francis, pp. 1–11.
Tseng, C.K. (2004). The past, present and future of phycology in China. Hydrobiologia, 512: 11–20.
Xu, X., Kim, J., Yuri, O and Park, J. (2014). Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresource technology. 169 C. 455-461. 10.1016/j.biortech.2014.07.015.
Yadav, S.K. (2022). Seaweeds: Are these weeds or resources? International Journal of Bioresource Science,9(2): 69-73.
Yong, W.T.L., Thien, V.Y., Rennielyn, R. and Kenneth, F.R. (2022). Seaweed: A potential climate change solution. Renewable and Sustainable Energy Reviews 159: 2022. 112222. https://doi.org/10.1016/j.rser.2022.112222.
Yuvaraj, N., Kanmani, P., Satishkumar, R., Paari, K., Pattukumar, V. and Arul V. (2011).Extraction, purification and partial characterization of Cladophora glomerata against multidrug resistant human pathogen Acinetobacter baumannii and fish pathogens. World J Fish Mar Sci., 3: 51–57.
Zhao, C., Yang, C. and Liu, B. (2016). Biological activities of green macroalgae Enteromorpha prolifera for potential applications. MOJ Food Process. Technol., 2(5):153‒155.