Naincy Rani1, Anil Duhan1, 2*, Pankaj Kumar3, Dinesh3 and Ravi Kumar Beniwal1
1Department of Chemistry, CCS Haryana Agricultural University, Hisar 125004, India
2Department of Agronomy, CCS Haryana Agricultural University, Hisar 125004, India
3Department of Soil Science, CCS Haryana Agricultural University, Hisar 125004, India
Email: a.duhan@hau.ac.in
Received-22.10.2022, Revised-10.12.2022, Accepted-24.12.2022
Abstract: Triketone herbicides arecommonly used for weed management incereal crops.Their efficacy studies more emphasized on weed management in maize. This review highlights the findings of scientific investigations throughout the world on the efficiency, phytotoxic effects, and residual analysis of triketone herbicides. The available scientific literature reveals that these herbicides when applied at recommended doses ensures the desired effects on targetweeds, mainly in post-emergence application and exhibiting favorable toxicological effects to non-target biota and the environmental profile. According to the studies realized so far, triketone herbicides are mainly analyzed on liquid chromatographic systems and extracted with mostly used QuEChERS technique. Future prospects should focus on the risk assessment of these herbicides and theirmetabolic products so as to exclude the toxicological effects.
Keywords: Triketone, herbicide, efficacy, phytotoxicity, residue analysis
References
Accinelli, C., Mencarelli, M., Balogh, A., Ulmer, B.J. and Screpanti, C. (2015). Evaluation of field application of fungi-inoculated bioplastic granules for reducing herbicide carry over risk. Crop Protection, 67:243–250.
Alferness, P. and Wiebe, L. (2002). Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. Journal of Agricultural and Food Chemistry, 50:3926-3934.
Armel, G.R., Wilson, H.P., Richardson, R.J. and Hines, T.E. (2003). Mesotrione Combinations in No-Till Corn (Zea mays). Weed Technology, 17:111–116.
Barchanska, H., Babilas, B., Gluzicka, K., Zralek, D. and Baranowska, I. (2014). Rapid determination of mesotrione, atrazine and its main degradation products in selected plants by MSPD–HPLC and indirect estimation of herbicides phytotoxicity by chlorophyll quantification. International Journal of Environmental Analytical Chemistry, 94:99-114.
Barchanska, H., Kluza, A., Krajczewska, K. and Maj, J. (2017). Degradation study of mesotrione and other triketone herbicides on soils and sediments. Journal of Soils and Sediments, 16:125- 133.
Beaudegnies, R., Edmunds, A.J., Fraser, T.E., Hall, R.G., Hawkes, T.R., Mitchell, G., Schaetzer, J., Wendeborn, S. and Wibley, J. (2009). Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorganic & Medicinal Chemistry, 17:4134-4152.
Bollman, S.L., Kells, J.J., Bauman, T.T., Loux, M.M., Slack, C.H. and Sprague, C.L. (2006). Mesotrione and atrazine combinations applied preemergence in corn (Zea mays L.). Weed technology, 20:908-920.
Bontempo, A.F., Carneiro, G.D., Guimaraes, F.A., Dos Reis, M.R., Silva, D.V., Rocha, B.H., Souza, M.F. and Sediyama, T. (2016). Residual tembotrione and atrazine in carrot. Journal of Environmental Science and Health, Part B, 51:465-468.
Boydston, R.A. and Williams, M.M. (2005). Managing volunteer potato (Solanum tuberosum) in field corn with mesotrione and arthropod herbivory. Weed Technology, 19:443-450.
Carles, L., Joly, M. and Joly, P. (2017). Mesotrione herbicide: Efficiency, effects, and fate in the environment after 15 years of agricultural use. Clean-Soil, Air, Water, 45(9):1700011.
Chaabane, H., Vulliet, E., Calvayrac, C., Coste, C.M. and Cooper, J.F. (2008). Behaviour of sulcotrione and mesotrione in two soils. Pest Management Science, 64:86-93.
Dayan, F.E., Howell, J.L., Marais, J.P., Ferreira, D. and Koivunen, M. (2011). Manuka oil, a natural herbicide with preemergence activity. Weed science, 59:464-469.
Freitas, L.G., Gotz, C.W., Ruff, M., Singer, H.P. and Muller, S.R. (2004). Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1028:277-286.
Handa, S.K., Agnihotri, N.P. and Kulshetra, G. (1999). Pesticide Residues: Significance. Research periodicals and book publishing house, New Delhi.
Jovic, M., Manojlovic, D., Stankovic, D., Gasic, U., Jeremic, D., Brceski, I. and Roglic, G. (2015). Electrochemical Degradation of Triketone Herbicides and Identification of Their Main Degradation Products. Clean–Soil, Air, Water, 43:1093-1099.
Kebede, M. and Anbasa, F. (2017). Efficacy of pre-emergence herbicides for the control of major weeds in maize (Zea mays L.) at Bako, Western Oromia, Ethiopia. American Journal of Agriculture and Forestry, 5:173-180.
Kuepper, A., Peter, F., Zollner, P., Lorentz, L., Tranel, P.J., Beffa, R. and Gaines, T.A. (2018). Tembotrione detoxification in 4‐hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor‐ resistant Palmer amaranth (Amaranthus palmeri S. Wats.). Pest Management Science, 74:2325-2334.
Lins, R.D., Beckett, T.H., Cully, S.E., Foresman, J.P. and Vail, G.D. (2014). Bicyclopyrone, a new herbicide for improved weed control in corn. Proceedings of the 2014 Weed Science Society of America/Canadian Weed Science Society, Vancouver, British Columbia.
Melo, A., Mansilha, C., Pinho, O. and Ferreira, I. (2013). Analysis of Pesticides in Tomato Combining QuEChERS and Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography. Food Analytical Methods, 6:559-568.
Mitchell, G., Bartlett, D.W., Fraser, T.E.M., Hawkers, T.R., Holt, D.C., Towson, J.K. and Wichert, R.A. (2001). Mesotrione: a new selective herbicide for use in maize. Pest Managment Science,57:120–128.
Pang, N., Wang, T. and Hu, J. (2016). Method validation and dissipation kinetics of four herbicides in maize and soil using QuEChERS sample preparation and liquid chromatography tandem mass spectrometry. Food Chemistry, 190:793-800.
Pannacci, E. and Covarelli, G. (2009). Efficacy of mesotrione used at reduced doses for post-emergence weed control in maize (Zea mays L.). Crop Protection, 28:57–61.
Pinke, G., Toth, K., Kovacs, A.J., Milics, G., Varga, Z., Blazsek, K., Gal, K.E. and Botta-Dukat, Z. (2014). Use of mesotrione and tembotrione herbicides for post-emergence weed control in alkaloid poppy (Papaver somniferum). International Journal of Pest Management, 60:187- 195.
Quan, G., Yin, C., Chen, T. and Yan, J. (2015). Degradation of herbicide mesotrione in three soils with differing physicochemical properties from China. Journal of Environmental Quality, 44:1631-1637.
Rani, N., Duhan, A. and Tomar, D. (2020). Ultimate fate of herbicide tembotrione and its metabolite TCMBA in soil. Ecotoxicology and Environmental Safety, 203:111023.
Rao, T.N., Sreenivasulu, D., Murthy, S.N.V.S. and Babu, K.R. (2016). A new validated method for determination of tembotrione and its metabolite residues in orange fruit. Analytical Chemistry, 16:99-105.
Reis, M.R., Aquino, L.A., Melo, C.A.D., Silva, D.V. and Dias, R.C. (2018). Carryover of tembotrione and atrazine affects yield and quality of potato tubers. Crop Protection, 40(1):1-6.
Rocaboy-Faquet, E., Noguer, T., Romdhane, S., Bertrand, C., Dayan, F.E. and Barthelmebs, L. (2014). Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Applied microbiology and biotechnology, 98:7243-7252.
Rouchaud, J., Neus, O., Callens, D. and Bulcke, R. (1998). Sulcotrione soil persistence and mobility in summer maize and winter wheat crops. Weed Research, 38:361.
Schulte, W. and Kocher, H. (2009). Tembotrione and combination partner isoxadifen-ethyl–mode of herbicidal action. Bayer Crop Science Journal, 62:5-52.
Singh, V.P., Guru, S.K., Kumar, A., Banga, A. and Tripathi, N. (2012). Bioefficacy of tembotrione against mixed weed complex in maize. Indian Journal of Weed Science, 44:1-5.
Stephenson, D.O., Bond, J.A., Landry, R.L. and Edwards, H.M. (2015). Weed management in corn with postemergence applications of tembotrione or thiencarbazone: tembotrione. Weed Technology, 29:350-358.
Sun, Y., Xu, Y., Sun, Y., Qin, X. and Wang, Q. (2013). Dissipation and dynamics of mesotrione in maize and soil under field ecosystem. Bulletin of Environmental Contamination and Toxicology, 90:242-247.
Sutton, P., Richards, C., Buren, L. and Glasgow, L. (2002). Activity of mesotrione on resistant weeds in maize., Pest Management Science, 58:981–984.
Swetha, K., Madhavi, M., Pratibha, G. and Ramprakash, T. (2015). Weed management with new generation herbicides in maize. Indian Journal of Weed Science, 47:432-433.
Takano, H.K., Rubin, R.D.S., Marques, L.H. and Tronquini, S.M. (2016). Potential use of herbicides in different sorghum hybrids. African Journal of Agricultural Research, 11:2277-2285.
Tawk, A., Deborde, M., Labanowski, J. and Gallard, H. (2015). Chlorination of the β-triketone herbicides tembotrione and sulcotrione: kinetic and mechanistic study, transformation products identification and toxicity. Water Research, 76:132-142.
Thiour-Mauprivez, C., Dayan, F.E., Terol, H., Devers, M., Calvayrac, C., Martin-Laurent, F. and Barthelmebs, L. (2022). Assessing the effects of β-triketone herbicides on HPPD from environmental bacteria using a combination of in silico and microbiological approaches. Environmental Science and Pollution Research, 1:1-13.
Williams, M.M., Boydston, R.A., Peachey, R.E. and Robinson, D. (2011). Significance of atrazine as a tank-mix partner with tembotrione. Weed Technology, 25:299-302.
Yu, L., Van Eerd, L.L., O‘Halloran, I., Sikkema, P.H. and Robinson, D.E. (2015). Response of four fall-seeded cover crops to residues of selected herbicides. Crop Protection, 75:11-17.
Zemelka, G. (2015). Fate of three herbicides (tembotrione, nicosulfuron and S-metachlor) on soil from limagne region (France). Technical Transactions, 4:136-144.