2011, Issue-1 & 2, Volume 3

THERMOPHILIC BACTERIA AND THEIR POTENTIAL FOR INDUSTRIAL APPLICATIONS

Alok Kumar and Ved Pal Singh

Applied Microbiology and Biotechnology Laboratory

Department of Botany, University of Delhi

Delhi-110 007, India

vpsingh_biology@rediffmail.com

 

Abstract: Enzymes produced by thermophilic bacteria have great potential in industrial biotechnology due to their ability to withstand wide range of temperature extremes. They have also gained industrial importance because of the improvement and invention of various tools and technologies. Thermozymes serve as industrial enzymes superior to traditional catalysts, as they perform better in high temperature conditions required for various industrialized enzymatic processes. As a result, the characterizations of microorganisms that are able to thrive in high temperature conditions have received a great deal of attention of researchers and industrialist all over the world. This review discuss about the different uses of thermophilic bacteria in various industrial applications such as in enzyme industry, in medicines, in single cell protein production, in bioconversion of wastes, in petroleum industry, in fuel production, in mining, and as biosensors. Also, this review focuses on phylogeny and stabilizing factors responsible for the existence of these bacteria under thermal environmental conditions. Although, a lot of work has been done to understand biochemical basis of thermophily, still further research work is required with respect to the genomic and proteomic features of thermophilic bacteria and their enzymes of industrial interest.

Keywords: High-temperature catalysis, Industrial applications, Thermophilic bacteria, Thermophily

Refrences

Ahmad, S. and Hameed, A. (2009). Antibiotic production by thermophilic Bacillus species SAT-4 Syed Aun Muhammad. Pak. J. Pharm. Sci., 22: 339-345.

AlMaghrabi, I.; Chaalal, O.; Islam, M.R. and Al-Ain. (1998). Thermophilic Bacteria in UAE Environment Can Enhance Biodegradation and Mitigate Wellbore Problems Abu Dhabi. International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates. doi. 10.2118/49545-MS.

Amelunxen, R.E. and Murdock, A.L. (1978). Microbial life at high temperatures: Mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial Life in Extreme Environments, Academic Press, London, pp 217–278.

Bahri, D. O.; Makbule, B.; Numan, O. and Dilek, T. (2010). Characterization of Thermostable α-amylase from Thermophilic and Alkaliphilic Bacillus sp. Isolate DM-15. Research Journal of Biological Sciences, 5: 118-124.

Beffa, T.; Staib, F.; Fischer, J.L.; Lyon, P.F.; Gumowski, P.; Marfenina, O.E.; Dunoyer-Geindre, S.; Georgen, F.; Roch-Susuki, R.; Gallaz, L. and Latgé, J.P. (1998). Mycological control and surveillance of biological waste and compost. Journal of Medical and Veterinary Mycology, 3: 137-145.

Belehradek, S. (1931). Le mechanisme physico-chemique de1, adaptation thermique. Protoplasma., 12: 406-434.

Berekaa, M.M.; Zaghloul, T.I.; Abdel-Fattah, Y.R.; Saeed, H.M. and Sifour, M. (2009).  Production of a novel glycerol-inducible lipases from thermophilic Geobacillus stearothermophilus strain-5. World Journal of Microbiology and Biotechnology, 25: 287-294.

Bora, L. and Kalita, M.C. (2008). Production of thermostable alkaline lipase on vegetable oils from a thermophilic Bacillus sp. DH4, characterization and its potential applications as detergent additive. Journal of Chemical Technology and Biotechnology,83: 688-693.

Brierle, J.A. (1997). Microbial populations in mineral biooxidation processes In: International biohydrometallurgy symposium IBS97, BIOMINE97, Australian Mineral Foundation, Glenside, South Australia, pp PSC1.1-PSC1.10

Campbell, L.L. (1955).Purification and properties of an alpha amylase from facultative thermophilic bacteria. Arch. Biochem. Biophy., 54:154-161.

Cheng, G.; Zhao, P.; Tang, X.F. and Tang, B. (2009). Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF.Microbiology, 155: 3661-3672.

Cheon, J.; Hong, F.; Hidaka, T.; Koshikawa, H. and Tsuno, H. (2007). Microbial population dynamics in a thermophilic methane digester fed with garbage. Water Science and Technology,55: 175-182.

Chien, A.; Edgar, D.B. and Trela, J.M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bact., 127(3): 1550-1557.

Ching, T.H. (2000). Lipases, Industrial uses. Encyclopedia of microbiology,3: 49-54.

Chitte, R.R. and Dey, S. (2000). Potent fibrinolytic enzyme from a thermophilic streptomyces megasporus strain SD5. Letters in Applied Microbiology, 31: 405-410.

Chitte, R.R. and Dey, S. (2001). Cloning and expression of an actinokinase gene from a thermophilic streptomyces in Escherechia coli. Indian Journal of Experimental Biology, 39:  410-415.

Cowan, D. (1996). Industrial enzyme technology. Trends Biotechnol., 14: 177-178.

Danson, M.; Hough, D. and Lunt, G. (1992). The Archaebacteria: Biochemical and Biotechnology. Portland press, London.

Das, S.; Paul, S.; Bag, S.K.; and Dutta, C. (2006). Analysis of Nanoarchaeum equitans genome   and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics, 7: 186.

Demirjian, D.C.; Moris-Varas, F. and Cassidy, C.S. (2001). Enzymes from extremophiles. Curr. Opin. Chem. Biol., 5: 144–151.

 Edwards, C. (1993). Isolation properties and potential applications of thermophilic   actinomycetes. Applied Biochemistry and Biotechnology, 42: 161-179.

Endo, S. (1962). Studies of protease produced by thermophilic bacteria. Hakka Kogaku Zasshi., 40: 346-353.

Fredrickson, J.K.; Zachara, J.M.and Balkwill, D.L. (2004). Geomicrobiology of high-level nuclear waste-contaminated vadose sedi- ments at the Hanford site, Washington state. Applied and Environmental Micro- biology,70: 4230–41.

Godfrey, T. and West, S. (1996). The application of enzymes in industry. In: Godfrey T, Reichelt J (ed) Industrial enzymology, 2nd edn. The Nature Press, New York,  pp 512.

Goihberg, E.; Dym, O.; Tel-Or, S.; Levin, I.; Pertez, M. and Burstein, Y. (2007). A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins: Structure, Function and Bioinformatics, 66(1): 196–204.

Haki, G.D. and Rakshit, S.K. (2003). Devel- opments in industrially important thermostable enzymes: a review. Bioresour. Technol., 89: 17-34.

Hawwa, R.; Aikens, J.; Turner, R.J.; Santarsiero, B.D. and Mesecar, A.D. (2009). Structural basis of thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactones from Geobacillus stearothermophilus. Archives of Biochemistry and Biophysics, 488: 109-120.

He, Q.; Lokken, P.M.; Chen, S. and Zhou, J. (2009). Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresource Technology, 100: 5955-5965.

Heilbrunn, I.V. (1924). The colloid chemistery of protoplasm. Am. J. Physiol.,69: 109 -199.

Hitzman, D.O. and Okla, B. (1981). Fermentation with thermophilic mixed cultures.US Patent 4302542.

Holst, O.; Manelius, A.; Krahe, M.; Markl, H.; Raven, N. and Sharp, M. (1997). Thermophiles and fermentation technology. Comp. Biochem. Physiol., 118: 415-422.   

 Humphery, A.E.; Moreira, A.; Armieger, W. and Zabriskie, D. (1975). Production of single cell protein from cellulose  wastes. Biotechnol  Bioeng  Symposium, 7:  45.

Hung, K. S.; Liu, S.M.; Fang, T.Y.; Tzou, W.S.; Lin F.P.; Sun, K.H. and Tang, S.J. (2011). Characterization of a salt-tolerant xylanase from Thermoanaerobacterium Sacchar- olyticum NTOU 1. Biotecnology Letters, 1-7.

Ishaque, M.M. and Kluepfel, D. (1980). Cellulase complexes of a mesophilic Streptomyces strain. Can. J. Microbiol.,26: 183-189.

John lacy. (1997). Actinomycetes in composts.  Ann.  Agric. Environ. Med., 4: 113-121.

Kaledin, A.; Sliusarenko. A. and Gorodetski, S. (1980). Isolation and properties of DNA polymerase from extreme thermophilic bacteria Thermus aquqticus YT-1. Biochimiya, 45: 644-651.

Karube, I.; Yokoyama, K.; Sode, K. and Tamiya, E. (1989). Microbial BOD Sensor Utilizing Thermophilic Bacteria.  Analytical Letters, 22: 791-801.

Koblizek, M.; Masojidek, J.; Komenda, J.; Kucera, T.; Pilloton, R.; Mattoo, A.K. and Giardi, M.T. (1998). A sensitive phot- osystem II-based biosensor for detection of a class of herbicides. Biotechnology and Bioengineering,60: 664-669.

Lao, P.J. and Forsdyke, D.R. (2000). Thermophilic Bacteria Strictly Obey Szybalski’s Transcription Direction Rule and Politely Purine-Load RNAs with Both Adenine and Guanine. Genome Res., 10: 228-236.

Lebedinsky, A.V.; Chernyh, N.A. and Bonch-Osmolovskaya, E.A. (2007). Phylogenetic Systematics of Microorganisms Inhabiting Thermal Environments Biochemistry (Mosc),72: 1299-312.

Lien, T.S.; Yu, S.T.; Wu, S.T. and Too, J.R. (2007). Induction and purification of thermophilic chitinase produced by Aeromonas sp. DYU 007 using glucosamine. Biotechnol Bioprocess Eng., 12: 610–617.

Lindsay, J.A. and Creaser, E.H. (1975). Enzyme thermostability is a thermostable property between Bacillus spp. Nature, 255: 650-652.

Ling L, Keohavong P, Dias C. and Thilly W. (1991). Optimization of the polymerase chain reaction with regard to fidelty: modified T7, Taq and Vent DNA polymerases. PCR Meth. Appl., 1: 63-69.

Longley M, Bennet S and Mosbaugh D (1990). Characterization of the 5–3′′ exonuclease associated with Thermus aquqticus DNA polymerase. Nucleic Acids Res., 18: 7317-7322.    

Magnusson, L.; Cicek, N.;  Sparling, R. and Levin, D. (2009). Continuous hydrogen production during fermentation of α-cellulose by the thermophillic bacterium Clostridium thermocellumBiotechnology and Bioengineering,2: 759-766.

Mead, D.; McClary, J.; Luckey, J.; Kostichka, A.; Witney, F. and Smith, L. (1991). Bst DNA polymerase permits rapid sequence analysis from nanogram amounts of template. Biotechniques, 11: 76-78.

 Meintanis, C.; Chalkou, K.I.; Kormas, K.A. and Karagouni, A.D. (2006). Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation, 17: 3-9.

Miquel, P. (1888). Monographie d’u bacille vivant audela’ de 70″ centigrades Ann. Microgr- aphie, 1: 3-10.

Myers, T. and Gelfand, D. (1991). Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry,30: 7661-7665.

Pantazaki A, Prista A and Kyriakidis D (2002). Biotechnologically relevant enzymes from Thermus thermophilus. Applied Microbiol. Biotechnol., 58: 1-12.

Perler, F.; Kumar, S. and Kong, H. (1996). Thermostable DNA polymerases. Adv. Protein Chem., 48: 377-435.

Polizeli, M.L.; Rizzatti, A.C.S.; Monti, R,; Terenzi, H.F.; Jorge, J.A. and Amorim, D.S. (2005). Xylanases from Fungi: properties and industrial applications. Appl. Microbiol. Biotechnol., 67: 577-591.

Poul Erik, P.N. (2010). Subtilases. US Patent 20100152092.

Rawlings, D.E.(2002). Heavy metal mining using microbes. Annual Review of Microbiology,56: 65-91

Ren, N.; Cao, G.; Wang, A.; Lee, D.J.; Guo, W. and Zhu, Y. (2008). Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium ihrmosaccharolyt- icum W16 Ren.  International Journal of Hydrogen Energy, 33: 6124-6132.

Rhodes, M.; Deeplaul, V. and Van S.P.J. (1998). Bacterial oxidation of Mt. Lyell concentrate. In: Technical Proceedings of ALTA, Copper Sulphide Symposium, pp 1–22.

Rivera-Santillan, R.E.; Perez, A.B; Izquierdo, L.B. and Bonzalez, F.G. (1999). Bioleaching of a copper sulphide flotation concentrate using mesophilic and therm- ophilic microorganisms. In: Amils R, Ballester A (ed) Biohydrometallurgy and the Environment Toward the Mining of the21st Century, Elsevier, Amsterdam, pp149.

Rossi, G. (1990). Biohydrometallurgy. McGrawHill, New york.

Royter, M.; Schmidt, M.; Elend, C.; Höbenreich, H.; Schäfer, T.; Bornscheuer, U.T. and Antranikian, G. (2009). Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SL1 and Caldana- erobacter subterraneus subsp. Tengcon- gensis extremophiles. Extremop- hiles, 13: 769-783.

Saiki, R.; Gelfand, D.; Stoffe, S.; Scharf, S.; Higushi, R.; Horn, G.; Mullis, K. and Erlich, H. (1988). Primer-directed enzyma- tic amplification of DNA with a thermostable DNA polymerase. Science, 239 (4839): 487-91.

Samal, B.; Karan, B.; Boone, T.C.; Chen, K.K.; Rahde, M.F. and Stabinsky, Y. (1989). Cloning and expression of the gene encoding a novel proteinase from Tritirachium album. Limber Genet., 85: 329-333.

Satapathy, S.S.; Dutta, M. and Ray, S.K. (2010). Higher tRNA diversity in thermophilic bacteria: A possible adaptation to growth at high temperature. Microbiol. Res., 165: 609-16.

Sindhu, G.S.; Sharma, P.; chakrabarti, T. and Gupta, J.K. (1997). Strain improvement for the production of a thermostable α-amylase. Enz. Microbiol. Biotechnol., 21: 525-530.

Singh, V.P. (1980). Investigations on the phosp- hatases of Thermoactinomyces vulgaris. Ph.D. Thesis, University of Delhi, India.

Singh, A. (2010). Screening of extracellular hydrolytic enzymes and characterisation of amylase from Thermoactinomyces vulgaris Tsiklinsky. Ph.D. Thesis, University of Delhi, India.

Singh, P. and Gill, P.K. (2006). Production of inulinases: Recent advances. Food Techn- ology and Biotechnology, 44: 151-162.

Songsiriritthigul, C.; Lapboonrueng, S.; Pechsri- chuang, P.;, Pesatcha, P. and Yamabhai, M. (2010). Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour. Technol., 101: 4096-103.

Sorkhoh, N.A.; Ibrahim, A.S.; Ghannoum, M.A. and Radwan, S.S. (1993). High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Applied Microbiology and Biotechnology, 39: 123126.

Sreekanth, D.; Sivaramakrishna, D.;, Himabindu, V. and Anjaneyulu, Y. (2009). Therm- ophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresource Technology,  100: 25342539.

Stetter, K.O. (1999). Extremophiles and their adaptation to hot environments. FEBS Lett., 452: 22-25.

Valentil, A.; Perugino, G.; Rossi, M. and Ciaramella, M. (2011). Positive supercoiling in thermophiles and mesophiles: of the good and evil. Biochemical Society Transactions, 39(1): 58-63.

Verma, N. and Singh, M. (2005.) Biosensors for heavy metals. Biometals, 18(2): 121-9.

Vyas, P.R. and Deshpande, M.V. (1991). Enzymatic hydrolysis of chitin by Myrot- hecium verrucaria chitinase complex and its utilization to produce SCP. J. Gen. Appl.Microbiol., 37: 267-275.

Waltraud, A.; Gudrun, S.; Elizaveta, B.O.; Vitaly, S.; Ursula, M.; Bernhard, A. and Astrid, R. (2004). Thermostable DNA polymerase from Anaerocellum thermophilum.US Patent 6692932.

Weimer, P.J. (1986). Use of thermophiles for the production of fuels and chemicals. In:Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley Press, New York, pp 217-255.

Williams, R.A.D. (1975). Caldoactive and therm- ophilic bacteria and their thermostable proteins. Sci. Prog. Oxf62: 373-393.

Wong, J.H.; Hao, J.; Cao, Z.; Qiao, M.; Xu, H.; Bai, Y. and Ng, T.B. (2008). An antifungal protein from Bacillus amyloliquefaciens. Journal of Applied Micr- obiology, 105: 1888-1898.

Yuan, WJ.; Olena, S.; Stephen, T.; Lee, T.; Volodymyr, I. and Hwa, T.J. (2003). Intensive bioconversion of sewage sludge and food waste by Bacillus thermo- amylovorans. World journal of microbiology & biotechnology, 19:  427-432.

Yuli, P.E.; Suhartono, M.T.; Rukayadi, Y.; Hwang, J.K and Pyun, Y.R. (2004). Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp.13.26. Enzyme and Microbial Technology,  35: 147-153.

Zamost, B.L.; Brantley, Q.I.; Elm, D.D. and Beck, C.M. (1990). Production and charac- terization of a thermostable protease produced by an asporogenous mutant of B. stearothermophilus. J. Indust. Microbiol., 5: 303-312.

Zamost,B.L.; Nielson, H.K. and Starnes, R.L. (1991). Thermostable enzymes for industrial applications.Journal of Industrial Micro- biology & Biotechnology, 8: 71-81.

Zhao, C.; Thong, S.O.; Karakashev, D.; Angelidaki, I.; Lu, W. and Wang, H. (2009). High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70°C) mixed culture enviro- nment. International Journal of Hydrogen Energy, 34: 5657-5665.

Zotta, T.; Ricciardi, A.; Rossano, R. and Parente, E. (2008). Urease production by Strepto- coccusthermophilus. Food Microbiol25: 113-11.