2025, Issue 8, Volume 17

THE MULTIFUNCTIONAL ROLE OF PHENOLIC COMPOUNDS IN PLANTS AND HUMANS 

View: Full Length Article

David Pedroza-Escobar1, Sofia-Joseline Sandoval-Villagrana1,2, Alejandra Torres-Flores1,2, Irais Castillo-Maldonado1, Dealmy Delgadillo-Guzmán2, Cecilia Hernández-Morales3, José Alfredo Facio-Umaña3, Joaquín Avalos-Soto4, Miguel Ángel Téllez-López4, Gladis Michel-Ramírez1, Cristian Mayela Estrada-Valenzuela3, Agustina Ramírez-Moreno5, Erika Flores-Loyola5, Jorge Haro-Santa Cruz1,Tania González-Cortés1*

1Centro de Investigación Biomédica. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27000, México

 2Facultad de Medicina. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27000, México

3Facultad de Odontología. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27000, México

4Cuerpo Académico Farmacia y Productos Naturales, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, México

5Facultad de Ciencias Biológicas. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27275, México.  

Email: tania-gonzalez@uadec.edu.mx   

Received-02.08.2025, Revised-13.08.2025, Accepted-27.08.2025

Abstract: Phenolic compounds constitute a structurally diverse group of plant secondary metabolites with significant ecological and biomedical relevance. This review provides an expanded and integrated classification into eleven groups, including both classical phenols and specialized derivatives with important biological activity. The objective is to present a framework that links chemical structure, plant function, and potential applications in human health and industry. The manuscript discusses their biosynthetic origins, and details their ecological roles in defense, stress tolerance, pigmentation, and signaling. A comprehensive description of tissue-specific distribution, environmental modulation, developmental variation, and genetic influence is provided, highlighting factors that determine phenolic profiles in different plant species. The review also examines their health-promoting properties, such as antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory effects, and explores how these functions contribute to chronic disease prevention, microbiome modulation, and pharmacological innovation. Emerging applications are discussed, including their use in green synthesis of nanoparticles, biopolymer modification, active food packaging, cosmetic formulations, and environmental remediation. Conclusion: phenolic compounds act as molecular bridges between plant biology and human well-being, with multifunctional properties that make them strategic in addressing challenges in health, sustainability, and industry.

Keywords:Phenolic compounds, Secondary metabolites, Antioxidant activity, Phytochemistry, Human health applications

REFERENCES

Ahmed, S., Khan, H., Aschner, M., Mirzae, H., Küpeli Akkol, E. and Capasso, R. (2020). Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. International journal of molecular sciences21(16), 5622. https://doi.org/10.3390/ijms21165622

Google Scholar

Bate-Smith E. C. (1968). The phenolic constituents of plants and their taxonomic significance: II. Monocotyledons. Linnean Society of London Botany Journal, 60(383), 325–356. https://doi.org/10.1111/j.1095-8339.1968.tb00094.x

Google Scholar

Berenshtein, L., Okun, Z. and Shpigelman, A. (2024). Stability and Bioaccessibility of Lignans in Food Products. ACS omega9(2), 2022–2031. https://doi.org/10.1021/acsomega.3c07636

Google Scholar

Bo, S., Chang, S. K., Zhu, H., Jiang, Y. and Yang, B. (2023). Naturally occurring prenylated stilbenoids: food sources, biosynthesis, applications and health benefits. Critical reviews in food science and nutrition63(26), 8083–8106. https://doi.org/10.1080/10408398.2022.2056131

Google Scholar

Bosse, M. A., Silva, M. B. D., Oliveira, N. G. R. M., Araujo, M. A., Rodrigues, C., Azevedo, J. P. and Reis, A. R. D. (2021). Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant physiology and biochemistry: PPB166, 512–521. https://doi.org/10.1016/j.plaphy.2021.06.007

Google Scholar

Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W. and Lin, Y. (1998). Tannins and human health: a review. Critical reviews in food science and nutrition38(6), 421–464. https://doi.org/10.1080/10408699891274273

Google Scholar

Corso, M., Perreau, F., Mouille, G. and Lepiniec, L. (2020). Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant science: an international journal of experimental plant biology296, 110471. https://doi.org/10.1016/j.plantsci.2020.110471

Google Scholar

Crozier, A., Jaganath, I. B. and Clifford, M. N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Natural product reports26(8), 1001–1043. https://doi.org/10.1039/b802662a

Google Scholar

Dos S Moreira, C., Santos, T. B., Freitas, R. H. C. N., Pacheco, P. A. F. and da Rocha, D. R. (2021). Juglone: A Versatile Natural Platform for Obtaining New Bioactive Compounds. Current topics in medicinal chemistry21(22), 2018–2045. https://doi.org/10.2174/1568026621666210804121054

Google Scholar

Dubrovina, A. S. and Kiselev, K. V. (2017). Regulation of stilbene biosynthesis in plants. Planta246(4), 597–623. https://doi.org/10.1007/s00425-017-2730-8

Google Scholar

Erb, M. and Kliebenstein, D. J. (2020). Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant physiology184(1), 39–52. https://doi.org/10.1104/pp.20.00433

Google Scholar

Gul, S., Aslam, K., Pirzada, Q., Rauf, A., Khalil, A. A., Semwal, P., Bawazeer, S., Al-Awthan, Y. S., Bahattab, O. S., Al Duais, M. A. and Thiruvengadam, M. (2022). Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential. Current topics in medicinal chemistry22(23), 1930–1949. https://doi.org/10.2174/1568026622666220901145002

Google Scholar

Gupta, S. C., Patchva, S. and Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8

Google Scholar

Herrmann, K. (1989). Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Critical reviews in food science and nutrition28(4), 315–347. https://doi.org/10.1080/10408398909527504

Google Scholar

Ibrahim, N., Fairus, S. and Mohamed, I. N. (2020). The Effects and Potential Mechanism of Oil Palm Phenolics in Cardiovascular Health: A Review on Current Evidence. Nutrients12(7), 2055. https://doi.org/10.3390/nu12072055

Google Scholar

Irais, C. M., María-de-la-Luz, S. G., Dealmy, D. G., Agustina, R. M., Nidia, C. H., Mario-Alberto, R. G., Luis-Benjamín, S. G., María-Del-Carmen, V. M. and David, P. E. (2020). Plant Phenolics as Pathogen-Carrier Immunogenicity Modulator Haptens. Current pharmaceutical biotechnology, 21(10), 897–905. https://doi.org/10.2174/1389201021666200121130313

Google Scholar

Jańczak-Pieniążek, M., Cichoński, J., Michalik, P. and Chrzanowski, G. (2022).Effect of Heavy Metal Stress on Phenolic Compounds Accumulation in Winter Wheat Plants. Molecules (Basel, Switzerland)28(1), 241. https://doi.org/10.3390/molecules28010241

Google Scholar

Jang, W. Y., Kim, M. Y. and Cho, J. Y. (2022). Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. International journal of molecular sciences23(24), 15482. https://doi.org/10.3390/ijms232415482

Google Scholar

Kaur, K., Sharma, R., Singh, A., Attri, S., Arora, S., Kaur, S. and Bedi, N. (2022). Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. Chinese herbal medicines14(4), 511–527. https://doi.org/10.1016/j.chmed.2022.08.001

Google Scholar

Khatoon, M., Dubey, A. and Janhvi, K. (2025). Unveiling Anthraquinones: Diverse Health Benefits of an Essential Secondary Metabolite. Recent patents on biotechnology19(3), 179–197. https://doi.org/10.2174/0118722083301761240628083511

Google Scholar

Kim Y. C. (2010).Neuroprotective phenolics in medicinal plants. Archives of pharmacal research33(10), 1611–1632. https://doi.org/10.1007/s12272-010-1011-x

Google Scholar

Liu, W., Feng, Y., Yu, S., Fan, Z., Li, X., Li, J. and Yin, H. (2021).The Flavonoid Biosynthesis Network in Plants. International journal of molecular sciences22(23), 12824. https://doi.org/10.3390/ijms222312824

Google Scholar

Liu, Y., Fang, M., Tu, X., Mo, X., Zhang, L., Yang, B., Wang, F., Kim, Y. B., Huang, C., Chen, L. and Fan, S. (2024). Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients16(19), 3305. https://doi.org/10.3390/nu16193305

Google Scholar

Majdalawieh, A. F., Terro, T. M., Ahari, S. H. and Abu-Yousef, I. A. (2024). α-Mangostin: A Xanthone Derivative in Mangosteen with Potent Anti-Cancer Properties. Biomolecules14(11), 1382. https://doi.org/10.3390/biom14111382

Google Scholar

Matern U. (1991). Coumarins and other phenylpropanoid compounds in the defense response of plant cells. Planta medica57(7 Suppl), S15–S20. https://doi.org/10.1055/s-2006-960224

Google Scholar

Maugeri, A., Lombardo, G. E., Cirmi, S., Süntar, I., Barreca, D., Laganà, G. and Navarra, M. (2022). Pharmacology and toxicology of tannins. Archives of toxicology96(5), 1257–1277. https://doi.org/10.1007/s00204-022-03250-0

Google Scholar

Mazziotti, I., Petrarolo, G. and La Motta, C. (2021). Aurones: A Golden Resource for Active Compounds. Molecules (Basel, Switzerland)27(1), 2. https://doi.org/10.3390/molecules27010002

Google Scholar

Moghaddam, S. Y. Z., Biazar, E., Esmaeili, J., Kheilnezhad, B., Goleij, F. and Heidari, S. (2023). Tannic Acid as a Green Cross-linker for Biomaterial Applications. Mini reviews in medicinal chemistry23(13), 1320–1340. https://doi.org/10.2174/1389557522666220622112959

Google Scholar

Murakami, A. and Ohigashi, H. (2007). Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. International journal of cancer, 121(11), 2357–2363. https://doi.org/10.1002/ijc.23161

Google Scholar

Nair, A. S., Sekar, M., Gan, S. H., Kumarasamy, V., Subramaniyan, V., Wu, Y. S., Mat Rani, N. N. I., Ravi, S. and Wong, L. S. (2024). Lawsone Unleashed: A Comprehensive Review on Chemistry, Biosynthesis, and Therapeutic Potentials. Drug design, development and therapy18, 3295–3313. https://doi.org/10.2147/DDDT.S463545

Google Scholar

Navarro-Orcajada, S., Conesa, I., Vidal-Sánchez, F. J., Matencio, A., Albaladejo-Maricó, L., García-Carmona, F. and López-Nicolás, J. M. (2023).Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Critical reviews in food science and nutrition63(25), 7269–7287. https://doi.org/10.1080/10408398.2022.2045558

Google Scholar

Naves, E. R., de Ávila Silva, L., Sulpice, R., Araújo, W. L., Nunes-Nesi, A., Peres, L. E. P. and Zsögön, A. (2019). Capsaicinoids: Pungency beyond Capsicum. Trends in plant science24(2), 109–120. https://doi.org/10.1016/j.tplants.2018.11.001

Google Scholar

Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L. and Napolitano, A. (2020). Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Frontiers in nutrition7, 60. https://doi.org/10.3389/fnut.2020.00060

Google Scholar

Paterson, J. R. and Lawrence, J. R. (2001). Salicylic acid: a link between aspirin, diet and the prevention of colorectal cancer. QJM: monthly journal of the Association of Physicians94(8), 445–448. https://doi.org/10.1093/qjmed/94.8.445

Google Scholar

Pesquet, E., Wagner, A. and Grabber, J. H. (2019).Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Current opinion in biotechnology56, 215–222. https://doi.org/10.1016/j.copbio.2019.02.001

Google Scholar

Ren, B., Kwah, M. X., Liu, C., Ma, Z., Shanmugam, M. K., Ding, L., Xiang, X., Ho, P. C., Wang, L., Ong, P. S. and Goh, B. C. (2021). Resveratrol for cancer therapy: Challenges and future perspectives. Cancer letters515, 63–72. https://doi.org/10.1016/j.canlet.2021.05.001

Google Scholar

Reyna-Margarita, H. R., Irais, C. M., Mario-Alberto, R. G., Agustina, R. M., Luis-Benjamín, S. G. and David, P. E. (2019). Plant Phenolics and Lectins as Vaccine Adjuvants. Current pharmaceutical biotechnology20(15), 1236–1243. https://doi.org/10.2174/1389201020666190716110705

Google Scholar

Scott, K. A., Cox, P. B. and Njardarson, J. T. (2022). Phenols in Pharmaceuticals: Analysis of a Recurring Motif. Journal of medicinal chemistry65(10), 7044–7072. https://doi.org/10.1021/acs.jmedchem.2c00223

Google Scholar

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. and Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531

Google Scholar

Shi, Z. L., Liu, Y. D., Yuan, Y. Y., Song, D., Qi, M. F., Yang, X. J., Wang, P., Li, X. Y., Shang, J. H. and Yang, Z. X. (2017). In Vitro and In Vivo Effects of Norathyriol and Mangiferin on α-Glucosidase. Biochemistry research international, 2017, 1206015.https://doi.org/10.1155/2017/1206015

Google Scholar

Silva, D., Sousa, A. C., Robalo, M. P. and Martins, L. O. (2023). A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. New biotechnology77, 176–184. https://doi.org/10.1016/j.nbt.2022.12.003

Google Scholar

Singh, B., Singh, J. P., Kaur, A. and Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food research international (Ottawa, Ont.)132, 109114. https://doi.org/10.1016/j.foodres.2020.109114

Google Scholar

Stringlis, I. A., de Jonge, R. and Pieterse, C. M. J. (2019).The Age of Coumarins in Plant-Microbe Interactions. Plant & cell physiology60(7), 1405–1419. https://doi.org/10.1093/pcp/pcz076

Google Scholar

Suarez-Kurtz, G. and Botton, M. R. (2015). Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert opinion on drug metabolism & toxicology11(1), 67–79. https://doi.org/10.1517/17425255.2015.976201

Google Scholar

Suhag, R., Kumar, R., Dhiman, A., Sharma, A., Prabhakar, P. K., Gopalakrishnan, K., Kumar, R. and Singh, A. (2023). Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Critical reviews in food science and nutrition63(24), 6757–6776. https://doi.org/10.1080/10408398.2022.2043237

Google Scholar

Takshak, S. and Agrawal, S. B. (2019). Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of photochemistry and photobiology. B, Biology193, 51–88. https://doi.org/10.1016/j.jphotobiol.2019.02.002

Google Scholar

Tinikul, R., Chenprakhon, P., Maenpuen, S. and Chaiyen, P. (2018). Biotransformation of Plant-Derived Phenolic Acids. Biotechnology journal13(6), e1700632. https://doi.org/10.1002/biot.201700632

Google Scholar

Tomar, A. (2021). Ethnomedicinal uses of some Papilionaceae plants among the rural and common people of Meerut division, Uttar Pradesh, India. Journal of Non.Timber Forest Products, 28(1), 28-32.

Google Scholar

Tomar, A. (2022a). Natural Medicines: Ailments inhibition by Teas, Infusions and Decoctions in Meerut Region of Uttar Pradesh, India. Pages 70. ISBN 978-9394991163.

Google Scholar

Tomar, A. (2022b). Medicinal Use of Andrographis paniculata (Kalmegh) to Cure Fever in Meerut District Uttar Pradesh, India. International Journal of Plant and Environment, 8(4), 36-38.

Google Scholar

Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients2(12), 1231–1246. https://doi.org/10.3390/nu2121231

Google Scholar

Veitch, N. C. (2007). Isoflavonoids of the leguminosae. Natural product reports24(2), 417–464. https://doi.org/10.1039/b511238a

Google Scholar

Wan, M. L. Y., Co, V. A. and El-Nezami, H. (2021). Dietary polyphenol impact on gut health and microbiota. Critical reviews in food science and nutrition61(4), 690–711. https://doi.org/10.1080/10408398.2020.1744512

Google Scholar

Wang, P., Wei, J., Hua, X., Dong, G., Dziedzic, K., Wahab, A. T., Efferth, T., Sun, W. and Ma, P. (2024). Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. Journal of cellular physiology239(10), e31063. https://doi.org/10.1002/jcp.31063

Google Scholar

Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., Bapat, P., Kwun, I. and Shen, C. L. (2014). Novel insights of dietary polyphenols and obesity. The Journal of nutritional biochemistry25(1), 1–18. https://doi.org/10.1016/j.jnutbio.2013.09.001

Google Scholar

Xu, M., Rao, J. and Chen, B. (2020). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical reviews in food science and nutrition60(5), 740–759. https://doi.org/10.1080/10408398.2018.1550051

Google Scholar

Yahfoufi, N., Alsadi, N., Jambi, M. and Matar, C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients10(11), 1618. https://doi.org/10.3390/nu10111618

Google Scholar

Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F. and Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules (Basel, Switzerland)23(4), 762. https://doi.org/10.3390/molecules23040762

Google Scholar

Zhang, W., Hadidi, M., Karaca, A. C., Hedayati, S., Tarahi, M., Assadpour, E. and Jafari, S. M. (2023). Chitosan-grafted phenolic acids as an efficient biopolymer for food packaging films/coatings. Carbohydrate polymers314, 120901. https://doi.org/10.1016/j.carbpol.2023.120901

Google Scholar

Zhao, L. X., Wang, Z. X., Zou, Y. L., Gao, S., Fu, Y. and Ye, F. (2021). Phenoxypyridine derivatives containing natural product coumarins with allelopathy as novel and promising proporphyrin IX oxidase-inhibiting herbicides: Design, synthesis and biological activity study. Pesticide biochemistry and physiology177, 104897. https://doi.org/10.1016/j.pestbp.2021.104897

Google Scholar