View: Full Length Article
David Pedroza-Escobar1, Sofia-Joseline Sandoval-Villagrana1,2, Alejandra Torres-Flores1,2, Irais Castillo-Maldonado1, Dealmy Delgadillo-Guzmán2, Cecilia Hernández-Morales3, José Alfredo Facio-Umaña3, Joaquín Avalos-Soto4, Miguel Ángel Téllez-López4, Gladis Michel-Ramírez1, Cristian Mayela Estrada-Valenzuela3, Agustina Ramírez-Moreno5, Erika Flores-Loyola5, Jorge Haro-Santa Cruz1,Tania González-Cortés1*
1Centro de Investigación Biomédica. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27000, México
2Facultad de Medicina. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27000, México
3Facultad de Odontología. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27000, México
4Cuerpo Académico Farmacia y Productos Naturales, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, México
5Facultad de Ciencias Biológicas. Universidad Autónoma de Coahuila. Unidad Laguna. Torreón, Coahuila, 27275, México.
Email: tania-gonzalez@uadec.edu.mx
Received-02.08.2025, Revised-13.08.2025, Accepted-27.08.2025
Abstract: Phenolic compounds constitute a structurally diverse group of plant secondary metabolites with significant ecological and biomedical relevance. This review provides an expanded and integrated classification into eleven groups, including both classical phenols and specialized derivatives with important biological activity. The objective is to present a framework that links chemical structure, plant function, and potential applications in human health and industry. The manuscript discusses their biosynthetic origins, and details their ecological roles in defense, stress tolerance, pigmentation, and signaling. A comprehensive description of tissue-specific distribution, environmental modulation, developmental variation, and genetic influence is provided, highlighting factors that determine phenolic profiles in different plant species. The review also examines their health-promoting properties, such as antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory effects, and explores how these functions contribute to chronic disease prevention, microbiome modulation, and pharmacological innovation. Emerging applications are discussed, including their use in green synthesis of nanoparticles, biopolymer modification, active food packaging, cosmetic formulations, and environmental remediation. Conclusion: phenolic compounds act as molecular bridges between plant biology and human well-being, with multifunctional properties that make them strategic in addressing challenges in health, sustainability, and industry.
Keywords:Phenolic compounds, Secondary metabolites, Antioxidant activity, Phytochemistry, Human health applications
REFERENCES
Ahmed, S., Khan, H., Aschner, M., Mirzae, H., Küpeli Akkol, E. and Capasso, R. (2020). Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. International journal of molecular sciences, 21(16), 5622. https://doi.org/10.3390/ijms21165622
Bate-Smith E. C. (1968). The phenolic constituents of plants and their taxonomic significance: II. Monocotyledons. Linnean Society of London Botany Journal, 60(383), 325–356. https://doi.org/10.1111/j.1095-8339.1968.tb00094.x
Berenshtein, L., Okun, Z. and Shpigelman, A. (2024). Stability and Bioaccessibility of Lignans in Food Products. ACS omega, 9(2), 2022–2031. https://doi.org/10.1021/acsomega.3c07636
Bo, S., Chang, S. K., Zhu, H., Jiang, Y. and Yang, B. (2023). Naturally occurring prenylated stilbenoids: food sources, biosynthesis, applications and health benefits. Critical reviews in food science and nutrition, 63(26), 8083–8106. https://doi.org/10.1080/10408398.2022.2056131
Bosse, M. A., Silva, M. B. D., Oliveira, N. G. R. M., Araujo, M. A., Rodrigues, C., Azevedo, J. P. and Reis, A. R. D. (2021). Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant physiology and biochemistry: PPB, 166, 512–521. https://doi.org/10.1016/j.plaphy.2021.06.007
Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W. and Lin, Y. (1998). Tannins and human health: a review. Critical reviews in food science and nutrition, 38(6), 421–464. https://doi.org/10.1080/10408699891274273
Corso, M., Perreau, F., Mouille, G. and Lepiniec, L. (2020). Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant science: an international journal of experimental plant biology, 296, 110471. https://doi.org/10.1016/j.plantsci.2020.110471
Crozier, A., Jaganath, I. B. and Clifford, M. N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Natural product reports, 26(8), 1001–1043. https://doi.org/10.1039/b802662a
Dos S Moreira, C., Santos, T. B., Freitas, R. H. C. N., Pacheco, P. A. F. and da Rocha, D. R. (2021). Juglone: A Versatile Natural Platform for Obtaining New Bioactive Compounds. Current topics in medicinal chemistry, 21(22), 2018–2045. https://doi.org/10.2174/1568026621666210804121054
Dubrovina, A. S. and Kiselev, K. V. (2017). Regulation of stilbene biosynthesis in plants. Planta, 246(4), 597–623. https://doi.org/10.1007/s00425-017-2730-8
Erb, M. and Kliebenstein, D. J. (2020). Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant physiology, 184(1), 39–52. https://doi.org/10.1104/pp.20.00433
Gul, S., Aslam, K., Pirzada, Q., Rauf, A., Khalil, A. A., Semwal, P., Bawazeer, S., Al-Awthan, Y. S., Bahattab, O. S., Al Duais, M. A. and Thiruvengadam, M. (2022). Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential. Current topics in medicinal chemistry, 22(23), 1930–1949. https://doi.org/10.2174/1568026622666220901145002
Gupta, S. C., Patchva, S. and Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8
Herrmann, K. (1989). Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Critical reviews in food science and nutrition, 28(4), 315–347. https://doi.org/10.1080/10408398909527504
Ibrahim, N., Fairus, S. and Mohamed, I. N. (2020). The Effects and Potential Mechanism of Oil Palm Phenolics in Cardiovascular Health: A Review on Current Evidence. Nutrients, 12(7), 2055. https://doi.org/10.3390/nu12072055
Irais, C. M., María-de-la-Luz, S. G., Dealmy, D. G., Agustina, R. M., Nidia, C. H., Mario-Alberto, R. G., Luis-Benjamín, S. G., María-Del-Carmen, V. M. and David, P. E. (2020). Plant Phenolics as Pathogen-Carrier Immunogenicity Modulator Haptens. Current pharmaceutical biotechnology, 21(10), 897–905. https://doi.org/10.2174/1389201021666200121130313
Jańczak-Pieniążek, M., Cichoński, J., Michalik, P. and Chrzanowski, G. (2022).Effect of Heavy Metal Stress on Phenolic Compounds Accumulation in Winter Wheat Plants. Molecules (Basel, Switzerland), 28(1), 241. https://doi.org/10.3390/molecules28010241
Jang, W. Y., Kim, M. Y. and Cho, J. Y. (2022). Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. International journal of molecular sciences, 23(24), 15482. https://doi.org/10.3390/ijms232415482
Kaur, K., Sharma, R., Singh, A., Attri, S., Arora, S., Kaur, S. and Bedi, N. (2022). Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. Chinese herbal medicines, 14(4), 511–527. https://doi.org/10.1016/j.chmed.2022.08.001
Khatoon, M., Dubey, A. and Janhvi, K. (2025). Unveiling Anthraquinones: Diverse Health Benefits of an Essential Secondary Metabolite. Recent patents on biotechnology, 19(3), 179–197. https://doi.org/10.2174/0118722083301761240628083511
Kim Y. C. (2010).Neuroprotective phenolics in medicinal plants. Archives of pharmacal research, 33(10), 1611–1632. https://doi.org/10.1007/s12272-010-1011-x
Liu, W., Feng, Y., Yu, S., Fan, Z., Li, X., Li, J. and Yin, H. (2021).The Flavonoid Biosynthesis Network in Plants. International journal of molecular sciences, 22(23), 12824. https://doi.org/10.3390/ijms222312824
Liu, Y., Fang, M., Tu, X., Mo, X., Zhang, L., Yang, B., Wang, F., Kim, Y. B., Huang, C., Chen, L. and Fan, S. (2024). Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients, 16(19), 3305. https://doi.org/10.3390/nu16193305
Majdalawieh, A. F., Terro, T. M., Ahari, S. H. and Abu-Yousef, I. A. (2024). α-Mangostin: A Xanthone Derivative in Mangosteen with Potent Anti-Cancer Properties. Biomolecules, 14(11), 1382. https://doi.org/10.3390/biom14111382
Matern U. (1991). Coumarins and other phenylpropanoid compounds in the defense response of plant cells. Planta medica, 57(7 Suppl), S15–S20. https://doi.org/10.1055/s-2006-960224
Maugeri, A., Lombardo, G. E., Cirmi, S., Süntar, I., Barreca, D., Laganà, G. and Navarra, M. (2022). Pharmacology and toxicology of tannins. Archives of toxicology, 96(5), 1257–1277. https://doi.org/10.1007/s00204-022-03250-0
Mazziotti, I., Petrarolo, G. and La Motta, C. (2021). Aurones: A Golden Resource for Active Compounds. Molecules (Basel, Switzerland), 27(1), 2. https://doi.org/10.3390/molecules27010002
Moghaddam, S. Y. Z., Biazar, E., Esmaeili, J., Kheilnezhad, B., Goleij, F. and Heidari, S. (2023). Tannic Acid as a Green Cross-linker for Biomaterial Applications. Mini reviews in medicinal chemistry, 23(13), 1320–1340. https://doi.org/10.2174/1389557522666220622112959
Murakami, A. and Ohigashi, H. (2007). Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. International journal of cancer, 121(11), 2357–2363. https://doi.org/10.1002/ijc.23161
Nair, A. S., Sekar, M., Gan, S. H., Kumarasamy, V., Subramaniyan, V., Wu, Y. S., Mat Rani, N. N. I., Ravi, S. and Wong, L. S. (2024). Lawsone Unleashed: A Comprehensive Review on Chemistry, Biosynthesis, and Therapeutic Potentials. Drug design, development and therapy, 18, 3295–3313. https://doi.org/10.2147/DDDT.S463545
Navarro-Orcajada, S., Conesa, I., Vidal-Sánchez, F. J., Matencio, A., Albaladejo-Maricó, L., García-Carmona, F. and López-Nicolás, J. M. (2023).Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Critical reviews in food science and nutrition, 63(25), 7269–7287. https://doi.org/10.1080/10408398.2022.2045558
Naves, E. R., de Ávila Silva, L., Sulpice, R., Araújo, W. L., Nunes-Nesi, A., Peres, L. E. P. and Zsögön, A. (2019). Capsaicinoids: Pungency beyond Capsicum. Trends in plant science, 24(2), 109–120. https://doi.org/10.1016/j.tplants.2018.11.001
Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L. and Napolitano, A. (2020). Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Frontiers in nutrition, 7, 60. https://doi.org/10.3389/fnut.2020.00060
Paterson, J. R. and Lawrence, J. R. (2001). Salicylic acid: a link between aspirin, diet and the prevention of colorectal cancer. QJM: monthly journal of the Association of Physicians, 94(8), 445–448. https://doi.org/10.1093/qjmed/94.8.445
Pesquet, E., Wagner, A. and Grabber, J. H. (2019).Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Current opinion in biotechnology, 56, 215–222. https://doi.org/10.1016/j.copbio.2019.02.001
Ren, B., Kwah, M. X., Liu, C., Ma, Z., Shanmugam, M. K., Ding, L., Xiang, X., Ho, P. C., Wang, L., Ong, P. S. and Goh, B. C. (2021). Resveratrol for cancer therapy: Challenges and future perspectives. Cancer letters, 515, 63–72. https://doi.org/10.1016/j.canlet.2021.05.001
Reyna-Margarita, H. R., Irais, C. M., Mario-Alberto, R. G., Agustina, R. M., Luis-Benjamín, S. G. and David, P. E. (2019). Plant Phenolics and Lectins as Vaccine Adjuvants. Current pharmaceutical biotechnology, 20(15), 1236–1243. https://doi.org/10.2174/1389201020666190716110705
Scott, K. A., Cox, P. B. and Njardarson, J. T. (2022). Phenols in Pharmaceuticals: Analysis of a Recurring Motif. Journal of medicinal chemistry, 65(10), 7044–7072. https://doi.org/10.1021/acs.jmedchem.2c00223
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. and Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry, 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531
Shi, Z. L., Liu, Y. D., Yuan, Y. Y., Song, D., Qi, M. F., Yang, X. J., Wang, P., Li, X. Y., Shang, J. H. and Yang, Z. X. (2017). In Vitro and In Vivo Effects of Norathyriol and Mangiferin on α-Glucosidase. Biochemistry research international, 2017, 1206015.https://doi.org/10.1155/2017/1206015
Silva, D., Sousa, A. C., Robalo, M. P. and Martins, L. O. (2023). A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. New biotechnology, 77, 176–184. https://doi.org/10.1016/j.nbt.2022.12.003
Singh, B., Singh, J. P., Kaur, A. and Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food research international (Ottawa, Ont.), 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114
Stringlis, I. A., de Jonge, R. and Pieterse, C. M. J. (2019).The Age of Coumarins in Plant-Microbe Interactions. Plant & cell physiology, 60(7), 1405–1419. https://doi.org/10.1093/pcp/pcz076
Suarez-Kurtz, G. and Botton, M. R. (2015). Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert opinion on drug metabolism & toxicology, 11(1), 67–79. https://doi.org/10.1517/17425255.2015.976201
Suhag, R., Kumar, R., Dhiman, A., Sharma, A., Prabhakar, P. K., Gopalakrishnan, K., Kumar, R. and Singh, A. (2023). Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Critical reviews in food science and nutrition, 63(24), 6757–6776. https://doi.org/10.1080/10408398.2022.2043237
Takshak, S. and Agrawal, S. B. (2019). Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of photochemistry and photobiology. B, Biology, 193, 51–88. https://doi.org/10.1016/j.jphotobiol.2019.02.002
Tinikul, R., Chenprakhon, P., Maenpuen, S. and Chaiyen, P. (2018). Biotransformation of Plant-Derived Phenolic Acids. Biotechnology journal, 13(6), e1700632. https://doi.org/10.1002/biot.201700632
Tomar, A. (2021). Ethnomedicinal uses of some Papilionaceae plants among the rural and common people of Meerut division, Uttar Pradesh, India. Journal of Non.Timber Forest Products, 28(1), 28-32.
Tomar, A. (2022a). Natural Medicines: Ailments inhibition by Teas, Infusions and Decoctions in Meerut Region of Uttar Pradesh, India. Pages 70. ISBN 978-9394991163.
Tomar, A. (2022b). Medicinal Use of Andrographis paniculata (Kalmegh) to Cure Fever in Meerut District Uttar Pradesh, India. International Journal of Plant and Environment, 8(4), 36-38.
Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231
Veitch, N. C. (2007). Isoflavonoids of the leguminosae. Natural product reports, 24(2), 417–464. https://doi.org/10.1039/b511238a
Wan, M. L. Y., Co, V. A. and El-Nezami, H. (2021). Dietary polyphenol impact on gut health and microbiota. Critical reviews in food science and nutrition, 61(4), 690–711. https://doi.org/10.1080/10408398.2020.1744512
Wang, P., Wei, J., Hua, X., Dong, G., Dziedzic, K., Wahab, A. T., Efferth, T., Sun, W. and Ma, P. (2024). Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. Journal of cellular physiology, 239(10), e31063. https://doi.org/10.1002/jcp.31063
Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., Bapat, P., Kwun, I. and Shen, C. L. (2014). Novel insights of dietary polyphenols and obesity. The Journal of nutritional biochemistry, 25(1), 1–18. https://doi.org/10.1016/j.jnutbio.2013.09.001
Xu, M., Rao, J. and Chen, B. (2020). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical reviews in food science and nutrition, 60(5), 740–759. https://doi.org/10.1080/10408398.2018.1550051
Yahfoufi, N., Alsadi, N., Jambi, M. and Matar, C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F. and Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules (Basel, Switzerland), 23(4), 762. https://doi.org/10.3390/molecules23040762
Zhang, W., Hadidi, M., Karaca, A. C., Hedayati, S., Tarahi, M., Assadpour, E. and Jafari, S. M. (2023). Chitosan-grafted phenolic acids as an efficient biopolymer for food packaging films/coatings. Carbohydrate polymers, 314, 120901. https://doi.org/10.1016/j.carbpol.2023.120901
Zhao, L. X., Wang, Z. X., Zou, Y. L., Gao, S., Fu, Y. and Ye, F. (2021). Phenoxypyridine derivatives containing natural product coumarins with allelopathy as novel and promising proporphyrin IX oxidase-inhibiting herbicides: Design, synthesis and biological activity study. Pesticide biochemistry and physiology, 177, 104897. https://doi.org/10.1016/j.pestbp.2021.104897