2023, Issue 4, Volume 15

RECENT WORK ON NIOSOMAL VESICLES: BILAYER STRUCTURE, BASIC COMPONENTS, PREPARATION AND EVALUATION

Raghavendra Kumar Dwivedi1*, DivyaDwivedi2, SomeshShukla2, Ravikant3, Aditya Raj Gupta 4 andAnkurPachauri1

1 Department of Pharmacy/ Sakshi College of Pharmacy Baikunthpur Kanpur/ Dr. A.P.J. Abdul Kalam University Lucknow/ India

2 Department of Pharmacy/ Rama University, Mandhana, Kanpur/ India

3Department ofPharmacy/ KuwarAjeet College of Pharmacy, Jaunpur/ Dr. A.P.J. Abdul Kalam University Lucknow/ India

4Department of Pharmacy/Advance Institute of Bio-tech and Paramedical Sciences, Kanpur/ India

Received-25.03.2023, Revised-11.04.2023, Accepted-25.04.2023

Abstract: Vesicular systems are a revolutionary way of administering drugs in a controlled manner to increase bioavailability and prolong the therapeutic effect. Niosomes are hydrated vesicular structures that include a non-ionic surface active agent, cholesterol, and other lipids. Over the liposomes, niosomes have various advantages, such as delivering drugs to specified sites that are non-toxic, stable for a longer time in different situations, and need low production cost. The first cosmetic industry that produced niosomes was L’Oreal. Later on, in the pharmaceutical sector, its applications were explored. Niosomes are developed by self association of cholesterol and surface active agents in an aqueous phase.Niosomes have the property of biodegradable, biocompatible and nonimmunogenic structure and also show the ability for encapsulation of both types of drugs hydrophilic and lipophilic. Over the last few years, it is studied that niosomes may enhance the drug bioavailability, and provides a novel approach for delivering numerous drugs like- protein therapeutic agents, chemical therapeutic agents and gene substances with less toxicity and desired targeted ability. This review provides complete details on niosomes, structure, types, fabrication processes, factors influencing niosomes competence, benefits and drawbacks, implementations, and cites numerous instance of niosomes studies over the last decade.

Keywords: Niosomes, Non-ionic surfactant, Cholesterol, Non toxic, Liposomes, Vesicles

References

Abdelkader, H., Alani, A. W. andAlany, R. G. (2014). Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug delivery21(2), 87-100.

Google Scholar

Azmin, M. N., Florence, A. T., Handjani‐Vila, R. M., Stuart, J. F. B., Vanlerberghe, G. and Whittaker, J. S. (1985). The effect of non‐ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. Journal of Pharmacy and Pharmacology37(4), 237-242.

Google Scholar

Arunachalam,A., Jeganath, S., Yamini, K. andTharangini, K. (2012). Niosomes: a novel drug delivery system. International journal of novel trends in pharmaceutical sciences2(1), 25-31.

Google Scholar

Agarwal, S., Mohamed, M. S., Raveendran, S., Rochani, A. K., Maekawa, T. and Kumar, D.S. (2018). Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC advances8(57), 32621-32636.

Google Scholar

Arunothayanun, P., Bernard, M. S., Craig, D. Q. M., Uchegbu, I. F. and Florence, A. T. (2000). The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyldiglycerol ether. International journal of pharmaceutics201(1), 7-14.

Google Scholar

Ag Seleci, D.,Seleci, M., Walter, J. G., Stahl, F. andScheper, T. (2016). Niosomes as nanoparticular drug carriers: fundamentals and recent applications. Journal of nanomaterials, 2016.

Google Scholar

Aboul-Einien,M. H., Kandil, S. M., Abdou, E. M., Diab, H. M. andZaki, M. S. (2020). Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. Journal of liposome research30(1), 54-67.

Google Scholar

Alemi, A., Reza, J. Z., Haghiralsadat, F., Jaliani, H. Z., Karamallah, M. H., Hosseini, S. A. andKaramallah, S. H. (2018). Paclitaxel and curcumincoadministration in novel cationic PEGylatedniosomal formulations exhibit enhanced synergistic antitumor efficacy. Journal of nanobiotechnology16(1), 1-20.

Google Scholar

Ammar, H. O., Haider, M., Ibrahim, M. and El Hoffy, N. M. (2017). In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug delivery24(1), 414-421.

Google Scholar

Abdelmonem, R., Elhabal, S. F., Abdelmalak, N. S., El-Nabarawi, M. A. andTeaima, M. H. (2021). Formulation and Characterization of Acetazolamide/CarvedilolNiosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics13(2), 221.

Google Scholar

Akbarzadeh, I., Saremi Poor, A., Yaghmaei, S., Norouzian, D., Noorbazargan, H., Saffar, S. andBakhshandeh, H. (2020). Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Development and Industrial Pharmacy46(9), 1535-1549.

Google Scholar

Alyami, H., Abdelaziz, K., Dahmash, E. Z. andIyire, A. (2020). Nonionic surfactant vesicles (niosomes) for ocular drug delivery: Development, evaluation and toxicological profiling. Journal of Drug Delivery Science and Technology60, 102069.

Google Scholar

Akbarzadeh, I., Yaraki, M. T., Bourbour, M., Noorbazargan, H., Lajevardi, A., Shilsar, S. M. S. andMousavian, S. M. (2020). Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. Journal of Drug Delivery Science and Technology57, 101715.

Google Scholar

Biswas, G. R. andMajee, S. B. (2017). Niosomes in ocular drug delivery. Eur. J. Pharm. Med. Res4, 813-819.

Google Scholar

Balin, B. J., Broadwell, R. D., Salcman, M. and El‐Kalliny, M. (1986). Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. Journal of Comparative Neurology251(2), 260-280.

Google Scholar

Broadwell, R. D. andBalin, B. J. (1985). Endocytic and exocytic pathways of the neuronal secretory process and trans synaptic transfer of wheat germ agglutinin‐horseradish peroxidase in vivo. Journal of Comparative Neurology242(4), 632-650.

Google Scholar

Bhardwaj, P., Tripathi, P., Gupta, R. andPandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology56, 101581.

Google Scholar

Basiri, L., Rajabzadeh, G. andBostan, A. (2017). α-Tocopherol-loadedniosome prepared by heating method and its release behavior. Food chemistry221, 620-628.

Google Scholar

Balakrishnan, P., Shanmugam, S., Lee, W. S., Lee, W. M., Kim, J. O., Oh, D. H. and Yong, C. S. (2009). Formulation and in vitro assessment of minoxidilniosomes for enhanced skin delivery. International journal of pharmaceutics377(1-2), 1-8.

Google Scholar

Bayindir, Z. S. andYuksel, N. (2010). Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of pharmaceutical sciences99(4), 2049-2060.

Google Scholar

Baillie, A. J., Florence, A. T., Hume, L. R., Muirhead, G. T. andRogerson, A. (1985). The preparation and properties of niosomes—non‐ionic surfactant vesicles. Journal of pharmacy and pharmacology37(12), 863-868.

Google Scholar

Bini, K. B., Akhilesh, D., Prabhakara, P. andKamath, J. V. (2012). Development and characterization of non-ionic surfactant vesicles (niosomes) for oral delivery of lornoxicam. International Journal of Drug Development and Research4(3), 147-154.

Google Scholar

Bendas, E. R., Abdullah, H., El-Komy, M. H. andKassem, M. A. (2013). Hydroxychloroquineniosomes: a new trend in topical management of oral lichen planus. International journal of pharmaceutics458(2), 287-295.

Google Scholar

Bansal, S., Aggarwal, G., Chandel, P. and Harikumar, S. L. (2013). Design and development of cefdinirniosomes for oral delivery. Journal of pharmacy &bioallied sciences5(4), 318.

Google Scholar

Chow, H. H. S., Anavy, N. and Villalobos, A. (2001). Direct nose–brain transport of benzoylecgonine following intranasal administration in rats. Journal of pharmaceutical sciences90(11), 1729-1735.

Google Scholar

Colombo, G., Lorenzini, L., Zironi, E., Galligioni, V., Sonvico, F., Balducci, A. G. andScagliarini, A. (2011). Brain distribution of ribavirin after intranasal administration. Antiviral research92(3), 408-414.

Google Scholar

Chen, X. Q., Fawcett, J. R., Rahman, Y. E., Ala, T. A. and Frey II, W. H. (1998). Delivery of nerve growth factor to the brain via the olfactory pathway. Journal of Alzheimer’s Disease1(1), 35-44.

Google Scholar

Chen, S., Hanning, S., Falconer, J., Locke, M. and Wen, J. (2019). Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics144, 18-39.

Google Scholar

De, S., Kundu, R. and Biswas, A. (2012). Synthesis of gold nanoparticles in niosomes. Journal of colloid and interface science386(1), 9-15.

Google Scholar

Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Rao, B. R. and Rambhau, D. (2002). Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. Journal of colloid and interface science251(2), 360-365.

Google Scholar

De, A., Venkatesh, N., Senthil, M., Sanapalli, B. K. R., Shanmugham, R. and Karri, V. V. S. R. (2018). Smart niosomes of temozolomide for enhancement of brain targeting. Nano biomedicine5, 1849543518805355.

Google Scholar

Escudero, I., Geanta, R. M., Ruiz, M. O. and Benito, J. M. (2014). Formulation and characterization of Tween 80/cholestherolniosomes modified with tri-n-octylmethylammonium chloride (TOMAC) for carboxylic acids entrapment. Colloids and Surfaces A: Physicochemical and Engineering Aspects461, 167-177.

Google Scholar

Frey, W. H., Liu, J., Chen, X., Thorne, R. G., Fawcett, J. R., Ala, T. A. and Rahman, Y. E. (1997). Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery4(2), 87-92.

Google Scholar

Gharbavi, M., Amani, J., Kheiri-Manjili, H., Danafar, H. and Sharafi, A. (2018). Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Advances in pharmacological sciences, 2018.

Google Scholar

Gutiérrez, G., Matos, M., Barrero, P., Pando, D., Iglesias, O. and Pazos, C. (2016). Iron-entrapped niosomes and their potential application for yogurt fortification. LWT74, 550-556.

Google Scholar

Girigoswami, A., Das, S. and De, S. (2006). Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy64(4), 859-866.

Google Scholar

Gaafar, P. M., Abdallah, O. Y., Farid, R. M. and Abdelkader, H. (2014). Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. Journal of liposome research24(3), 204-215.

Google Scholar

Illum, L. (2000). Transport of drugs from the nasal cavity to the central nervous system. European journal of pharmaceutical sciences11(1), 1-18.

Google Scholar

Illum, L. (2003). Nasal drug delivery—possibilities, problems and solutions. Journal of controlled release87(1-3), 187-198.

Google Scholar

Isnan, A. P. and Jufri, M. (2017). Formulation of niosomal gel containing green tea extract (camellia sinensis L. Kuntze) using thin-layer hydration. International Journal of applied Pharmaceutics9, 38-43.

Google Scholar

Jain, S., Singh, P., Mishra, V. and Vyas, S. P. (2005). Mannosylatedniosomes as adjuvant–carrier system for oral genetic immunization against Hepatitis B. Immunology letters101(1), 41-49.

Google Scholar

Kumar, G. P. and Rajeshwarrao, P. (2011). Nonionic surfactant vesicular systems for effective drug delivery—an overview. Actapharmaceuticasinica B1(4), 208-219.

Google Scholar

Kazi, K. M., Mandal, A. S., Biswas, N., Guha, A., Chatterjee, S., Behera, M. and Kuotsu, K. (2010). Niosome: a future of targeted drug delivery systems. Journal of advanced pharmaceutical technology & research1(4), 374.

Google Scholar

Kaur, D. and Kumar, S. (2018). Niosomes: present scenario and future aspects. Journal of drug delivery and therapeutics8(5), 35-43.

Google Scholar

Kida, S., Pantazis, A. W. R. O. and Weller, R. O. (1993). CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathology and applied neurobiology19(6), 480-488.

Google Scholar

Kassem, M. A., El-Sawy, H. S., Abd-Allah, F. I., Abdelghany, T. M. and Khalid, M. (2017). Maximizing the therapeutic efficacy of imatinibmesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design. Journal of pharmaceutical sciences106(1), 111-122.

Google Scholar

Kamboj, S., Saini, V. and Bala, S. (2014). Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. The scientific world journal, 2014.

Google Scholar

Löwhagen, P., Johansson, B. B. and Nordborg, C. (1994). The nasal route of cerebrospinal fluid drainage in man. A light–microscope study. Neuropathology and applied neurobiology20(6), 543-550.

Google Scholar

Miller, D. S. (2010). Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends in pharmacological sciences31(6), 246-254.

Google Scholar

Mathison, S., Nagilla, R. and Kompella, U. B. (1998). Nasal route for direct delivery of solutes to the central nervous system: fact or fiction?. Journal of drug targeting5(6), 415-441.

Google Scholar

Mahale, N. B., Thakkar, P. D., Mali, R. G., Walunj, D. R. and Chaudhari, S. R. (2012). Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Advances in colloid and interface science183, 46-54.

Google Scholar

Marianecci, C., Di Marzio, L., Rinaldi, F., Celia, C., Paolino, D., Alhaique, F. andCarafa, M. (2014). Niosomes from 80s to present: the state of the art. Advances in colloid and interface science205, 187-206.

Google Scholar

Moghassemi, S. and Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release185, 22-36.

Google Scholar

Manosroi, A., Chutoprapat, R., Abe, M. and Manosroi, J. (2008). Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. International journal of pharmaceutics352(1-2), 248-255.

Google Scholar

Manosroi, A., Jantrawut, P., Akazawa, H., Akihisa, T., Manosroi, W. and Manosroi, J. (2011). Transdermal absorption enhancement of gel containing elastic niosomes loaded with gallic acid from Terminaliachebula galls. Pharmaceutical biology49(6), 553-562.

Google Scholar

Mullaicharam, A. R. and Murthy, R. S. R. (2006). Lung accumulation of niosome-entrapped gentamicin sulfate follows intravenous and intratracheal administration in rats. Journal of drug delivery science and technology16(2), 109-113.

Google Scholar

Manosroi, A., Khanrin, P., Lohcharoenkal, W., Werner, R. G., Götz, F., Manosroi, W. and Manosroi, J. (2010). Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. International Journal of Pharmaceutics392(1-2), 304-310.

Google Scholar

Mayer, L. D., Bally, M. B., Hope, M. J. and Cullis, P. R. (1985). Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. BiochimicaetBiophysicaActa (BBA)-Biomembranes816(2), 294-302.

Google Scholar

Martin, F. J. (1990). Pharmaceutical manufacturing of liposomes. Drugs and the pharmaceutical sciences41, 267-316.

Google Scholar

Ma, H., Guo, D., Fan, Y., Wang, J., Cheng, J. and Zhang, X. (2018). Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules23(7), 1756.

Google Scholar

Martin, F. J. (1990). Pharmaceutical manufacturing of liposomes. Drugs and the pharmaceutical sciences41, 267-316.

Google Scholar

Manconi, M., Valenti, D., Sinico, C., Lai, F., Loy, G. and Fadda, A. M. (2003). Niosomes as carriers for tretinoin: II. Influence of vesicular incorporation on tretinoinphotostability. International Journal of Pharmaceutics260(2), 261-272.

Google Scholar

Mehrabi, M. R., Shokrgozar, M. A., Toliyat, T., Shirzad, M., Izadyari, A., ZoghiMofrad, L. andAkbarzadeh, A. (2020). Enhanced Therapeutic Efficacy of Vincristine Sulfate for Lymphoma Using Niosome-Based Drug Delivery. Jundishapur Journal of Natural Pharmaceutical Products15(3).

Google Scholar

Mirzaie, A., Peirovi, N., Akbarzadeh, I., Moghtaderi, M., Heidari, F., Yeganeh, F. E. andBakhtiari, R. (2020). Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorganic Chemistry103, 104231.

Google Scholar

Naderinezhad, S., Amoabediny, G. and Haghiralsadat, F. (2017). Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC advances7(48), 30008-30019.

Google Scholar

Onochie, I. T. O., Nwakile, C. D., Umeyor, C. E., Uronnachi, E. M., Osonwa, U. E., Attama, A. A. and Esimone, C. O. (2013). Formulation and evaluation of niosomes of Benzyl penicillin. Journal of Applied Pharmaceutical Science3(12), 66.

Google Scholar

Pajouhesh, H. and Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2(4), 541-553.

Google Scholar

Perloff, M. D., Von Moltke, L. L., Marchand, J. E. and Greenblatt, D. J. (2001). Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. Journal of pharmaceutical sciences90(11), 1829-1837.

Google Scholar

Patel, J., Ketkar, S., Patil, S., Fearnley, J., Mahadik, K. R. and Paradkar, A. R. (2015). Potentiating antimicrobial efficacy of propolis through niosomal-based system for administration. Integrative medicine research4(2), 94-101.

Google Scholar

Rajera, R., Nagpal, K., Singh, S. K. and Mishra, D. N. (2011). Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin34(7), 945-953.

Google Scholar

Ritwiset, A., Krongsuk, S. and Johns, J. R. (2016). Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study. Applied Surface Science380, 23-31.

Google Scholar

Ruckmani, K. and Sankar, V. (2010). Formulation and optimization of zidovudineniosomes. AapsPharmscitech11(3), 1119-1127.

Google Scholar

Sherry Chow, H. H., Chen, Z. and Matsuura, G. T. (1999). Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. Journal of pharmaceutical sciences88(8), 754-758.

Google Scholar

Shinichiro, H., Takatsuka, Y., Tai, M. and Hiroyuki, M. (1981). Absorption of drugs from the nasal mucosa of rat. International journal of pharmaceutics7(4), 317-325.

Google Scholar

Sahin, N. O. (2007). Niosomes as nanocarrier systems. Nanomaterials and nanosystems for biomedical applications, 67-81.

Google Scholar

Shehata, T., Kimura, T., Higaki, K. and Ogawara, K. I. (2016). In-vivo disposition characteristics of PEG niosome and its interaction with serum proteins. International journal of pharmaceutics512(1), 322-328.

Google Scholar

Sharma, V., Anandhakumar, S. and Sasidharan, M. (2015). Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Materials Science and Engineering: C56, 393-400.

Google Scholar

Shtil, A. A., Grinchuk, T. M., Tee, L. I. L. I. A. N., Mechetner, E. B. and Ignatova, T. N. (2000). Overexpression of P-glycoprotein is associated with a decreased mitochondrial transmembrane potential in doxorubicin-selected K562 human leukemia cells. International journal of oncology17(2), 387-47.

Google Scholar

Shaker, D. S., Shaker, M. A. and Hanafy, M. S. (2015). Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. International journal of pharmaceutics493(1-2), 285-294.

Google Scholar

Shreedevi, H. M., Nesalin, J. A. J. and Mani, T. T. (2016). Development and evaluation of Stavudineniosome by ether injection method. Int. J. Pharm. Sci. Res7, 38-46.

Google Scholar

Thorne, R. G., Emory, C. R., Ala, T. A. and Frey II, W. H. (1995). Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain research692(1-2), 278-282.

Google Scholar

Thorne, R. G. and Frey, W. H. (2001). Delivery of neurotrophic factors to the central nervous system. Clinical pharmacokinetics40(12), 907-946.

Google Scholar

Tavano, L., Alfano, P., Muzzalupo, R. and de Cindio, B. (2011). Niosomesvsmicroemulsions: new carriers for topical delivery of capsaicin. Colloids and surfaces B: Biointerfaces87(2), 333-339.

Google Scholar

Teaima, M. H., El Mohamady, A. M., El-Nabarawi, M. A. and Mohamed, A. I. (2020). Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Drug development and industrial pharmacy46(5), 751-761.

Google Scholar

Ueda, K., Okamura, N., Hirai, M., Tanigawara, Y., Saeki, T., Kioka, N. and Hori, R. (1992). Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. Journal of Biological Chemistry267(34), 24248-24252.

Google Scholar

Verma, S. and Utreja, P. (2019). Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian journal of pharmaceutical sciences14(2), 117-129.

Google Scholar

Vora, B., Khopade, A. J. and Jain, N. K. (1998). Proniosome based transdermal delivery of levonorgestrel for effective contraception. Journal of controlled release54(2), 149-165.

Google Scholar

Waddad, A. Y., Abbad, S., Yu, F., Munyendo, W. L., Wang, J., Lv, H. and Zhou, J. (2013). Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. International journal of pharmaceutics456(2), 446-458.

Google Scholar

Yuksel, N., Bayindir, Z. S., Aksakal, E. and Ozcelikay, A. T. (2016). In situ niosome forming maltodextrinproniosomes of candesartan cilexetil: In vitro and in vivo evaluations. International journal of biological macromolecules82, 453-463.

Google Scholar

Zhang, S. and Morris, M. E. (2005). Efflux transporters in drug excretion. Drug delivery: principles and applications. Wiley, Hoboken, 381-398.

Google Scholar

Zubairu, Y., Negi, L. M., Iqbal, Z. and Talegaonkar, S. (2015). Design and development of novel bioadhesiveniosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations. asian journal of pharmaceutical sciences10(4), 322-330.

Google Scholar