N. Sivaraj1*, K. Anitha1, B. Parameswari1, L. Saravanan1, Prasanna Holajjer1, B. Bhaskar1, G. Karunakaran2 and M. Srinivas Rao3
1ICAR-National Bureau of Plant Genetic Resources, Regional Station,
Hyderabad-500 030, Telangana, India
2Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research,
Bengaluru-560089, Karnataka, India
3Deccan Exotics Farmer Producing Company Limited, Hyderabad, Telangana, India
Email: sivarajn@gmail.com
Received-01.03.2023, Revised-12.03.2023, Accepted-23.03.2023
Abstract: The present study aims to identify the suitable areas for avocado cultivation in India. The study employs ecological niche modelling techniques to identify the potential avocado growing regions based on various bioclimatic variables (19) such as maximum temperature of warmest month, precipitation of wettest month, precipitation of coldest quarter, precipitation of warmest quarter, mean temperature of warmest quarter, temperature annual range, temperature seasonality, isothermality etc. The MaxEnt algorithm was used to generate a model for avocado cultivation sites in India. The results indicate that the regions with the highest suitability for avocado cultivation are concentrated in the western, southern and northern parts of the country, with some potential areas in the northeast. The study also provides insights into the climatic and environmental factors that affect avocado growth and suggests possible strategies for avocado cultivation in India. This study can serve as a valuable guide for farmers and policymakers in identifying suitable locations for avocado cultivation and promoting the development of the avocado industry in India.
Keywords: Avocado, Bioclimatic variables, Cultivation, Germplasm
REFERENCES
Carnaval, A.C. and Moritz, C. (2008). Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography, 35: 1187–1201.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A, Manion G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. Mc. C., Peterson, T., Phillips, S. J., Richardson, K., Scashetti-Pereira, R., Schapire, R.E., Soberon, J., Willams, S., Wisz, M.S. and Zimmermann, N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29:129-151.
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E. and Yates, C. J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17:43-57.
FAO (2021). Major Tropical Fruits: Market Review. Rome.
Ghosh, S.P. (2000). Avocado production in India. In: Papademetriou, M.K. (ed)Avocado production in Asia and Pacific. Food and Agriculture Organisation of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand.
Hijmans, R. J. and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12:2272-2281.
Holajjer, P., Bharat, H. Gawade, Khan, Z. and Sivaraj, N. (2022). Prediction of potential geographic distribution of exotic nematode, Aphelenchoides fragariae in India based on MaxEnt ecological niche modeling. Indian Journal of Plant Protection, 50(1):51-55.
Peterson, A.T., Soberón. J. and Pearson, R.G., et al. (2011). Ecological niches and geographic distributions. Princeton, Princeton University Press.
Philips, S.J. and Dudik, M. (2008). Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecography, 31 (2): 161-175.
Phillips, S. J., Dudik, M. and Schapire, R.E. (2004). A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Canada, 655-662.
Phillips, S. J., Anderson, R. P. and Schapire, R.E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231-259.
Reddy, M. T., Begum, H., Sunil, N., Pandravada, S. R. and Sivaraj, N. (2015). Assessing Climate Suitability for Sustainable Vegetable Roselle (Hibiscus sabdariffa var.sabdariffa L.) Cultivation in India Using MaxEnt Model. Agricultural and Biological Sciences Journal, 1(2): 62-72.
Reddy, M. T., Begum, H., Sunil, N., Pandravada, S. R. and Sivaraj, N and Kumar, S. (2015). Mapping the Climate Suitability Using MaxEnt Modeling Approach for Ceylon Spinach (Basella alba L.) Cultivation in India. The Journal of Agricultural Sciences, 10(2): 87-97.
Roura-Pascual N., Brotons, L.A.T. Peterson and Thuiller, W. (2009). Consensual predictionsof potential distributional areasfor invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological invasions DOI 10.1007/s10530-008-9313-3.
Sivaraj, N., Elangovan, M., Kamala, V., Pandravada, S. R., Pranusha, P. and Chakrabarty, S. K. (2016). Maximum Entropy (Maxent) Approach to Sorghum Landraces Distribution Modelling. Indian Journal of Plant Genetic Resources, 29(1): 16-21.
Sivaraj, N., Pandravada, S.R., Kamala, V, Anitha, K., Backiyarani, S., Saraswathi, M.S., Durai, P. and Uma, S. (2022). Ecological Niche modelling for Manoranjitham, a endemic and threatened banana cultivar of Eastern Ghats, South India. Journal of Plant Development Sciences, 14(1): 1-9.
Srinivas Rao, M., Chandrasekhar Rao, M., Sivaraj, N., Anitha, K., Babu Abraham, Parameswari, B., Bhaskar Bajaru, and Prasanna Holajjer (2021).Assessing the climate suitable regions for cultivation of Dragon fruit (Hylocereus undatus) in India. Journal of Plant Development Sciences, 13(9):707-712.
Tripathi, P.C., Karunakaran, G., Sakthivel, T., Sankar, V. and Senthilkumar, R. (2014). Avocado cultivation in India. Technical Bulletin. ICAR-IIHR Central Horticultural Experimental Station, Chettali, Kodagu, Karnataka, PP.18.
Verbruggen, H., Tyberghein, L., Pauly, K., Vlaeminck, C., VanNieuwenhuyze, K., Kooistra, W., Leliaert, F. and De Clerck, O. (2009) Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecololgy Biogeography, 18: 393-405.
Williams, J. N., Seo, C.W., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J. M. and Schwartz, M.W. (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15: 565-576.
Wollan, A. K., Bakkestuen, V., Kauserud., H., Gulden, G. and Halvorsen, R. (2008). Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography, 35: 2298–2310.