2024, Issue 2, Volume 16

PLANT ADAPTATIONS TO SALINITY STRESS ANDVARIOUS AGRONOMIC MEASURES TO OVERCOME SALINITY STRESS

Harsh1*, Sushil Kumar Singh1, Parveen Kumar1, Arun1 and Mukesh Kumar Jat2

1Department of Agronomy, CCSHAU, Hisar (Haryana)

2Department of Soil Science, CCSHAU, Hisar (Haryana)

Email: pooniaharshlp@gmail.com

Received-06.01.2024, Revised-19.01.2024, Accepted-15.02.2024

Abstract: Salinity poses a significant challenge to plant productivity, particularly in arid and semi-arid regions, impacting approx. 1125 mha of land are affected by salinity at the present time, of which 76 mhaare affected by human-induced salinization and sodification, and 1.5 mha become unsuitable for agricultural production each year due to rising salinity levels. Salt stress affects plant growth through mechanisms such as water stress, ion toxicity, and oxidative damage. Plants respond to salinity through morphological adaptations like Root System Architecture (RSA), leaf anatomy modifications, and the presence of salt glands. Physiological adaptations include osmotic adjustment, ion homeostasis, and antioxidant defense systems. Understanding these adaptations is vital for developing effective agronomic measures, including soil management, crop rotation, genetic improvement, and water management. Employing these strategies can mitigate the negative effects of salinity stress, improving crop productivity and sustainability in saline environments. However, the escalating risk of soil salinization underscores the importance of interdisciplinary research and innovative approaches to address this global agricultural challenge.

Keywords: Adaptations, Management, Mitigation, Salinity, Stress

References

Akter, S., Kamruzzaman, M. and Khan, M. (2023). Enhanced potassium fertilization improved rice (Oryza sativa) yield and nutrient uptake in coastal saline soil of Bangladesh. Journal of Soil Science and Plant Nutrition, 23, 1884–1895.

Google Scholar

Alamer, K.H., Perveen, S., Khaliq, A., Zia UlHaq, M., Ibrahim, M.U. and Ijaz, B. (2022). Mitigation of salinity stress in maize seedlings by the application of vermicompost and sorghum water extracts. Plants11, 11192548.

Google Scholar

Ali, M., Kamran, M., Abbasi, G.H., Saleem, M.H., Ahmad, S., Parveen, A., Malik, Z., Afzal, S., Ahmar, S. and Dawar, K.M. (2021). Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. J. Plant GrowthRegul.40, 2236–2248.

Google Scholar

Ambastha, V., Friedmann, Y. and Leshem, Y. (2020). Laterals take it better–Emerging and young lateral roots survive lethal salinity longer than the primary root in Arabidopsis.Scientific Reports,10,1–11.

Google Scholar

Amoah, A.A., Miyagawa, S. and Kawakubo, N. (2015). Effect of supplementing inorganic fertilizer with organic fertilizer on growth and yield of rice-cowpea mixed crop. Plant Prod. Sci.,15, 109–117. 

Google Scholar

Ashraf, M. and Harris, J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166, 3–16.

Google Scholar

Bhowmik, U., Kibria, M.G., Rhaman, M.S., Murata, Y. and Hoque, M.A. (2021). Screening of rice genotypes for salt tolerance by physiological and biochemical characters. Plant Sci.Today8, 467–472.

Google Scholar

Byrt, C. S., Munns, R., Burton, R. A., Gilliham, M. and Wege, S. (2018). Root cell wall solutions for crop plants in saline soils. Plant Science, 269, 47–55.

Google Scholar

Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., Sun, H., Yu, J. and Yang, Q. (2018). Genome-wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high-throughput sequencing. Int. J. Mol. Sci.19, 4076.

Google Scholar

Chauhan, P.S., Lata, C., Tiwari, S., Chauhan, A.S., Mishra, S.K., Agrawal, L., Chakrabarty, D. and Nautiyal, C.S. (2018). Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci. Rep.9, 11912.

Google Scholar

Cushman, J.C. (1990). Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during crassulacean acid metabolism induction by salt stress. Photosynth. Res. 35, 15–27. 

Google Scholar

Dimkpa, C.O., White, J.C., Elmer, W.H. and Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem.65, 8552–8559.

Google Scholar

Dinneny, J. R. (2019). Developmental responses to water and salinity in root systems. Annual Review of Cell and Developmental Biology, 35, 239–257.

Google Scholar

Ditta, A. and Arshad, M. (2016). Applications and Perspectives of Using Nanomaterials for Sustainable Plant Nutrition. Nanotechnol. Rev.5, 209–229.

Google Scholar

Duan, A. Q., Tao, J. P., Jia, L. L., Tan, G. F., Liu, J. X., Li, T. and Xiong, A. S. (2020). AgNAC1, a celery transcription factor, related to regulation onlignin biosynthesis and salt tolerance.Genomics,112, 5254–5264.

Google Scholar

Ekinci, M., Turan, M. and Yildirim, E. (2022). Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity, alleviating the oxidative stress and abscisic acid content in cabbage seedlings. Turk. J. Agric. For.46, 28–37.

Google Scholar

Feng, W., Lindner, H., Robbins, N. E. and Dinneny, J. R. (2016). Growing out of stress: The role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell,28, 1769–1782.

Google Scholar

Franco, J.A., Banon, S., Vicente, M.J., Miralles, J. and Martínez-Sánchez, J.J. (2011). Root development in horticultural plants grown under abiotic stress conditions—A review.J. Hortic. Sci. Biotechnol.86, 543–556. 

Google Scholar

Fukase, E. and Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Dev.132, 104954.

Google Scholar

Galvan-Ampudia, C. S., Julkowska, M. M., Darwish, E., Gandullo, J.,Korver, R. A., Brunoud, G. and Testerink, C. (2013). Halotropism is aresponse of plant roots to avoid a saline environment.Current Biology,23, 2044–2050.

Google Scholar

Gechev, T. S., van Breusegem, F., Stone, J. M., Denev, I. and Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays,28, 1091–1101.

Google Scholar

Hannan, A., Hoque, M.N., Hassan, L. and Robin, A.H. (2020). Adaptive mechanisms of root system of rice for withstanding osmotic stress. Recent Advances Rice Research; IntechOpen: London, (UK).

Google Scholar

Hasanuzzaman M., Bhuyan M.H.M., Parvin K., Bhuiyan T.F., Anee T.I., Nahar, K., Hossen M., Zulfiqar F., Alam M. and Fujita M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci.21, 8695.

Google Scholar

Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F. and Rahman, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci.22, 9326.

Google Scholar

Ha-Tran, D.M., Nguyen, T.T., Hung, S.H., Huang, E. and Huang, C.C. (2020). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. Int. J. Mol. Sci.22, 3154.

Google Scholar

Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R. and Sevilla, F. (2001). Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves: Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127, 817–831.

Google Scholar

Hoque, M.N., Hannan, A., Imran, S., Paul, N.C., Mondal, M., Sadhin, M., Rahman, M., Bristi, J.M., Dola, F.S. and Hanif, M. (2022). Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. J. Plant Growth Regul.28, 1–20.

Google Scholar

Hossain, M. S. (2019). Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci., 1 (1), 1–3.

Google Scholar

Hou, R., Yang, L., Wuyun, T., Chen, S. and Zhang, L. (2023) Genes related to osmoregulation and antioxidation play important roles in the response of Trollius chinensis seedlings to saline-alkali stress. Front. Plant Sci.14, 1080504.

Google Scholar

Houimli, S.I.M., Denden, M. and El-Hadj, S.B. (2008). Induction of salt tolerance in pepper (Capsicum annum) by 24-epibrassinolide. Eurasian J. Biosci.2, 83–90.

Google Scholar

Hussain S. (Ed.) (2019). Climate change and agriculture. (London: IntechOpen).

Google Scholar

Imran, S. Sarker, P., Hoque, M.N., Paul, N.C., Mahamud, M.A., Chakrobortty, J., Tahjib-Ul-Arif, M., Latef, A.A., Hasanuzzaman, M. and Rhaman, M.S. (2022). Biochar actions for the mitigation of plant abiotic stress. Crop Pasture Sci., 74, 6-20.

Google Scholar

Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46, 302–318.

Google Scholar

Islam, W., Waheed, A., Naveed, H. and Zeng, F. (2022). MicroRNAs mediated plant responses to salt stress. Cells11, 2806.

Google Scholar

Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-Arree, W., Pankean, P. and Suksamrarn, A. (2015). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynth., 1, 312–320.

Google Scholar

Jha, U. C., Bohra, A., Jha, R. and Parida, S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep.38, 255–277.

Google Scholar

Julkowska, M. M., Koevoets, I. T., Mol, S., Hoefsloot, H., Feron, R., Tester, M. A. and Testerink, C. (2017). Genetic components of root architecture remodeling in response to salt stress. Plant Cell,29,3198–3213.

Google Scholar

Kajala, K., Gouran, M., Shaar-Moshe, L., Mason, G. A., Rodriguez-Medina, J., Kawa, D. and Brady, S. M. (2021). Innovation, conservation, and repurposing of gene function in root cell type development.Cell,184, 3333–3348.

Google Scholar

Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., Batool, N. and Mazhar, R. (2018) Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J. Plant Nutr.41, 526–538.

Google Scholar

Kerbab, S.,Silini, A.,Chenari, B.A.,Cherif-Silini, H.,Eshelli, M., El Houda, R.N. and Belbahri, L. (2021). Mitigation of NaCl stress in wheat by rhizosphere engineering using salt habitat adapted PGPR halotolerant bacteria. Appl. Sci.11, 1034.

Google Scholar

Khalilzadeh, R., Seyed, S.R. and Jalilian, J. (2017). Growth, physiological status, and yield of salt stressed wheat (Triticumaestivum L.) plants affected by biofertilizer and cycocel applications. Arid. Land Res. Manag.32, 71–90.

Google Scholar

Khan, H. A, Sharma, N., Siddique, K. H. M., Colmer, T. D., Sutton, T. and Baumann, U. (2023) Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes. Front. Plant Sci. 14, 1191457.

Google Scholar

Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R. and Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot.35, 64–70.

Google Scholar

Korver, R. A., van den Berg, T., Meyer, A. J., Galvan-Ampudia, C. S., tenTusscher, K. H. W. J. and Testerink, C. (2020). Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant, Cell and Environment,43, 143–158.

Google Scholar

Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L. and Mathew, M.K. (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J. Exp. Bot.62, 4215–4228.

Google Scholar

Kuang, L., Shen, Q., Wu, L., Yu, J., Fu, L., Wu, D. and Zhang, G. (2019). Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environ. Exp. Bot.160, 59–70.

Google Scholar

Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S. and Verma, J.P. (2020) Plant growth-promoting bacteria:Biological tools for the mitigation of salinity stress in plants. Front. Microbiol.11, 1216.

Google Scholar

Larcher, W. (2003). Physiological Plant Ecology, 4th ed.; Springer-Verlag: Heidelberg/Berlin, Germany; New York, (USA).

Google Scholar

Li, C., Mur, L. A. J., Wang, Q., Hou, X., Zhao, C. and Chen, Z. (2022). ROS scavenging and ion homeostasis is required for the adaptation of halophyte Kareliniacaspia to high salinity. Front. Plant Sci. 13, 979956.

Google Scholar

Li, P., Yang, X., Wang, H., Pan, T., Wang, Y., Xu, Y. and Yang, Z. (2021). Genetic control of root plasticity in response to salt stress in maize. Theoretical and Applied Genetics,134, 1475–1492.

Google Scholar

Liu, S. and Zheng, J. (2024). Adaptive strategies based on shrub leaf-stem anatomy and their environmental interpretations in the eastern Qaidam Basin. BMC Plant Biol., 24, 323.

Google Scholar

Malakar, P. and Chattopadhyay, D. (2021). Adaptation of plants to salt stress: the role of the ion transporters. J. Plant Biochem. Biotechnol. 30, 668–683.

Google Scholar

Meena, K.K., Bitla, U.M., Sorty, A.M., Singh, D.P., Gupta, V.K., Wakchaure, G.C. and Kumar, S. (2020). Mitigation of salinity stress in wheat seedlings due to the application of phytohormone-rich culture filtrate extract of methylotrophic actinobacterium Nocardioides sp. NIMMe6. Front. Microbiol.11, 2091.

Google Scholar

Morton, M.J.L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S. and Tester, M. (2019), Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant J., 97, 148-163.

Google Scholar

Munns, R. and Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? Tansley insight. New Phytologist., 208, 668–673.

Google Scholar

Munns, R. and Passioura, J.B. (1984). Hydraulic resistance of plants. Effects of NaCl in barley and lupin. Aust. J. Plant Physiol. 11, 351–359.

Google Scholar

Munns, R. and Termaat, A. (1986). Whole-plant responses to salinity. Aust. J. Plant Physiol13, 143–160.

Google Scholar

Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.

Google Scholar

Ondrašek, G. (2019). Irrigation in Agroecosystems; IntechOpen: London, (UK).

Google Scholar

Ondrasek, G.,BubaloKovačić, M.,Carević, I.,Štirmer, N.,Stipičević, S.,Udiković-Kolić, N.,Filipović, V.,Romić, D. and Rengel, Z. (2021). Bioashesand their potential for reuse to sustain ecosystem services and underpin circular economy. Renew. Sustain. Energy Rev., 151, 111540.

Google Scholar

Ondrasek, G. and Rengel, Z. (2021). Environmental salinization processes: detection, implications & solutions. Sci. Total Environ. 754, 142432.

Google Scholar

Ondrasek, G., Rengel, Z., Petosic, D., Filipovic, V. (2014). Land and water management strategies for the improvement of crop production. Emerging Technologies and Management of Crop Stress Tolerance, 2, 291–313.

Google Scholar

Pandey, K., Lahiani, M.H., Hicks, V.K., Keith Hudson, M., Green, M.J. and Khodakovskaya, M. (2018). Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLOS ONE13, e0202274. 

Google Scholar

Parkash, V. and Singh, S. (2020). Potential of biochar application to mitigate salinity stress in eggplant. Hortc. Sci., 55, 1946–1955.

Google Scholar

Pérez-Gómez, J.D., Abud-Archila, M., Villalobos-Maldonado, J.J.,Enciso-Saenz, S., Hernández de, L.H., Ruiz-Valdiviezo, V.M. and Gutiérrez-Miceli, F.A. (2017). Vermicompost and vermiwash minimized the influence of salinity stress on growth parameters in potato plants. Compost Sci. Util.25, 282–287.                                         Google Scholar

Rahman, M. U., Ijaz, M., Qamar, S., Bukhari, S. A. and Malik, K. (2018). Abiotic stress signaling in rice crop. Amsterdam, Netherlands: Elsevier.

Google Scholar

Rajendran, K., Tester, M. and Roy, S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ32, 237–249.

Google Scholar

Rasheed, F., Anjum, N.A., Masood, A., Sofo, A. and Khan, N.A. (2020). The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J. Plant Growth Regul.30, 1–4.

Google Scholar

Rossi, L., Francini, A., Minnocci, A. and Sebastiani, L. (2015). Salt stress modifies apoplastic barriers in olive (Olea europaea L.): A comparison between a salt-tolerant and a salt-sensitive cultivar. Sci. Hortic.192, 38–46.

Google Scholar

Ruiz-Lau, N., Oliva-Llaven, M.A., Montes-Molina, J.A. and Gutiérrez-Miceli, F.A. (2020). Mitigation of salinity stress by using the vermicompost and vermiwash.Ecological and Practical Applications for Sustainable Agriculture; Springer, Singapore, pp. 345–356.

Google Scholar

Sachdev S., Ansari, S.A., Ansari M.I., Fujita M. and Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants,10, 277. 

Google Scholar

Shahid, S.A., Zaman, M. and Heng, L. (2018). Salinity and sodicity adaptation and mitigation options. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, pp. 55–89.

Google Scholar

Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Appl. Sci.10, 7326.

Google Scholar

Siew, R. and Klein, C.R. (1969). The effect of NaCl on some metabolic and fine structural changes during the greening of etiolated leaves. J. Cell Biol.37, 590–596.                    Google Scholar

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. and Savoure, A. (2015). Diversity, distribution and roles of osmo-protective compounds accumulated in halophytes under abiotic stress. Ann. Bot.115, 433–447.

Google Scholar

Sophie de Dorlodot, Forster, B., Pagès, L., Price, A., Tuberosa, R. and Draye, X. (2007) Root system architecture: opportunities and constraints for genetic improvement of crops.Trends in Plant Science, 12, (10), 474-481.

Google Scholar

Sweetman, C., Khassanova, G., Miller, T. K., Booth, N. J., Kurishbayev, A. and Jatayev, S. (2020). Salt-induced expression of intracellular vesicle trafficking genes, CaRab-GTP, and their association with Na+ accumulation in leaves of chickpea (Cicer arietinum L.). BMC Plant Biol. 20, 183.                                                  Google Scholar

Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K. and Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11, 1195–1206.

Google Scholar

Vaahtera, L., Schulz, J. and Hamann, T. (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants,5, 924–932.

Google Scholar

Vadez, V., Krishnamurthy, L., Thudi, M., Anuradha, C., Colmer, T. D. and Turner, N. C. (2012). Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol. Breed.30, 9–21.

Google Scholar

Verma, S., Negi, N. P., Pareek, S., Mudgal, G. and Kumar, D. (2022). Auxin response factors in plant adaptation to drought and salinity stress.Physiologia plantarum, 174(3) e13714.

Google Scholar

Wolf, S., Hematy, K. and Hofte, H. (2012). Growth control and cell wall signaling in plants. Annual Review of Plant Biology,63, 381–407.

Google Scholar

Xie, W., Zhang, X., Wang, T. and Hu, J. (2012). Botany, traditional uses, phytochemistry and pharmacology of Apocynumvenetum L. (Luobuma): A review. J. Ethnopharmacol. 141, 1–8.

Google Scholar

Yan, J., Liu, Y., Yang, L., He, H., Huang, Y., Fang, L. and Zhang, A. (2021). Cellwallβ-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Molecular Plant,14,411–425.

Google Scholar

Zaman, M., Shahid, S.A. and Heng, L. (2018). Irrigation systems and zones of salinity development. in: guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham.

Google Scholar

Zhao, C., Zayed, O., Zeng, F., Liu, C., Zhang, L., Zhu, P. and Zhu, J. K. (2019). Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis.The New Phytologist,224, 274–290.

Google Scholar

Zhao, Q. (2016). Lignification: Flexibility, biosynthesis and regulation. Trends in Plant Science,21, 713–721.

Google Scholar

Zolla, G., Heimer, Y. M. and Barak, S. (2010). Mild salinity stimulates astress-induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany,61, 211–224.

Google Scholar