Harsh1*, Sushil Kumar Singh1, Parveen Kumar1, Arun1 and Mukesh Kumar Jat2
1Department of Agronomy, CCSHAU, Hisar (Haryana)
2Department of Soil Science, CCSHAU, Hisar (Haryana)
Email: pooniaharshlp@gmail.com
Received-06.01.2024, Revised-19.01.2024, Accepted-15.02.2024
Abstract: Salinity poses a significant challenge to plant productivity, particularly in arid and semi-arid regions, impacting approx. 1125 mha of land are affected by salinity at the present time, of which 76 mhaare affected by human-induced salinization and sodification, and 1.5 mha become unsuitable for agricultural production each year due to rising salinity levels. Salt stress affects plant growth through mechanisms such as water stress, ion toxicity, and oxidative damage. Plants respond to salinity through morphological adaptations like Root System Architecture (RSA), leaf anatomy modifications, and the presence of salt glands. Physiological adaptations include osmotic adjustment, ion homeostasis, and antioxidant defense systems. Understanding these adaptations is vital for developing effective agronomic measures, including soil management, crop rotation, genetic improvement, and water management. Employing these strategies can mitigate the negative effects of salinity stress, improving crop productivity and sustainability in saline environments. However, the escalating risk of soil salinization underscores the importance of interdisciplinary research and innovative approaches to address this global agricultural challenge.
Keywords: Adaptations, Management, Mitigation, Salinity, Stress
References
Akter, S., Kamruzzaman, M. and Khan, M. (2023). Enhanced potassium fertilization improved rice (Oryza sativa) yield and nutrient uptake in coastal saline soil of Bangladesh. Journal of Soil Science and Plant Nutrition, 23, 1884–1895.
Alamer, K.H., Perveen, S., Khaliq, A., Zia UlHaq, M., Ibrahim, M.U. and Ijaz, B. (2022). Mitigation of salinity stress in maize seedlings by the application of vermicompost and sorghum water extracts. Plants, 11, 11192548.
Ali, M., Kamran, M., Abbasi, G.H., Saleem, M.H., Ahmad, S., Parveen, A., Malik, Z., Afzal, S., Ahmar, S. and Dawar, K.M. (2021). Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. J. Plant GrowthRegul., 40, 2236–2248.
Ambastha, V., Friedmann, Y. and Leshem, Y. (2020). Laterals take it better–Emerging and young lateral roots survive lethal salinity longer than the primary root in Arabidopsis.Scientific Reports,10,1–11.
Amoah, A.A., Miyagawa, S. and Kawakubo, N. (2015). Effect of supplementing inorganic fertilizer with organic fertilizer on growth and yield of rice-cowpea mixed crop. Plant Prod. Sci.,15, 109–117.
Ashraf, M. and Harris, J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166, 3–16.
Bhowmik, U., Kibria, M.G., Rhaman, M.S., Murata, Y. and Hoque, M.A. (2021). Screening of rice genotypes for salt tolerance by physiological and biochemical characters. Plant Sci.Today, 8, 467–472.
Byrt, C. S., Munns, R., Burton, R. A., Gilliham, M. and Wege, S. (2018). Root cell wall solutions for crop plants in saline soils. Plant Science, 269, 47–55.
Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., Sun, H., Yu, J. and Yang, Q. (2018). Genome-wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high-throughput sequencing. Int. J. Mol. Sci., 19, 4076.
Chauhan, P.S., Lata, C., Tiwari, S., Chauhan, A.S., Mishra, S.K., Agrawal, L., Chakrabarty, D. and Nautiyal, C.S. (2018). Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci. Rep., 9, 11912.
Cushman, J.C. (1990). Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during crassulacean acid metabolism induction by salt stress. Photosynth. Res. 35, 15–27.
Dimkpa, C.O., White, J.C., Elmer, W.H. and Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem., 65, 8552–8559.
Dinneny, J. R. (2019). Developmental responses to water and salinity in root systems. Annual Review of Cell and Developmental Biology, 35, 239–257.
Ditta, A. and Arshad, M. (2016). Applications and Perspectives of Using Nanomaterials for Sustainable Plant Nutrition. Nanotechnol. Rev., 5, 209–229.
Duan, A. Q., Tao, J. P., Jia, L. L., Tan, G. F., Liu, J. X., Li, T. and Xiong, A. S. (2020). AgNAC1, a celery transcription factor, related to regulation onlignin biosynthesis and salt tolerance.Genomics,112, 5254–5264.
Ekinci, M., Turan, M. and Yildirim, E. (2022). Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity, alleviating the oxidative stress and abscisic acid content in cabbage seedlings. Turk. J. Agric. For., 46, 28–37.
Feng, W., Lindner, H., Robbins, N. E. and Dinneny, J. R. (2016). Growing out of stress: The role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell,28, 1769–1782.
Franco, J.A., Banon, S., Vicente, M.J., Miralles, J. and Martínez-Sánchez, J.J. (2011). Root development in horticultural plants grown under abiotic stress conditions—A review.J. Hortic. Sci. Biotechnol., 86, 543–556.
Fukase, E. and Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Dev.132, 104954.
Galvan-Ampudia, C. S., Julkowska, M. M., Darwish, E., Gandullo, J.,Korver, R. A., Brunoud, G. and Testerink, C. (2013). Halotropism is aresponse of plant roots to avoid a saline environment.Current Biology,23, 2044–2050.
Gechev, T. S., van Breusegem, F., Stone, J. M., Denev, I. and Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays,28, 1091–1101.
Hannan, A., Hoque, M.N., Hassan, L. and Robin, A.H. (2020). Adaptive mechanisms of root system of rice for withstanding osmotic stress. Recent Advances Rice Research; IntechOpen: London, (UK).
Hasanuzzaman M., Bhuyan M.H.M., Parvin K., Bhuiyan T.F., Anee T.I., Nahar, K., Hossen M., Zulfiqar F., Alam M. and Fujita M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci.21, 8695.
Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F. and Rahman, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci.22, 9326.
Ha-Tran, D.M., Nguyen, T.T., Hung, S.H., Huang, E. and Huang, C.C. (2020). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. Int. J. Mol. Sci., 22, 3154.
Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R. and Sevilla, F. (2001). Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves: Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127, 817–831.
Hoque, M.N., Hannan, A., Imran, S., Paul, N.C., Mondal, M., Sadhin, M., Rahman, M., Bristi, J.M., Dola, F.S. and Hanif, M. (2022). Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. J. Plant Growth Regul., 28, 1–20.
Hossain, M. S. (2019). Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci., 1 (1), 1–3.
Hou, R., Yang, L., Wuyun, T., Chen, S. and Zhang, L. (2023) Genes related to osmoregulation and antioxidation play important roles in the response of Trollius chinensis seedlings to saline-alkali stress. Front. Plant Sci., 14, 1080504.
Houimli, S.I.M., Denden, M. and El-Hadj, S.B. (2008). Induction of salt tolerance in pepper (Capsicum annum) by 24-epibrassinolide. Eurasian J. Biosci., 2, 83–90.
Hussain S. (Ed.) (2019). Climate change and agriculture. (London: IntechOpen).
Imran, S. Sarker, P., Hoque, M.N., Paul, N.C., Mahamud, M.A., Chakrobortty, J., Tahjib-Ul-Arif, M., Latef, A.A., Hasanuzzaman, M. and Rhaman, M.S. (2022). Biochar actions for the mitigation of plant abiotic stress. Crop Pasture Sci., 74, 6-20.
Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46, 302–318.
Islam, W., Waheed, A., Naveed, H. and Zeng, F. (2022). MicroRNAs mediated plant responses to salt stress. Cells, 11, 2806.
Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-Arree, W., Pankean, P. and Suksamrarn, A. (2015). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynth., 1, 312–320.
Jha, U. C., Bohra, A., Jha, R. and Parida, S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep.38, 255–277.
Julkowska, M. M., Koevoets, I. T., Mol, S., Hoefsloot, H., Feron, R., Tester, M. A. and Testerink, C. (2017). Genetic components of root architecture remodeling in response to salt stress. Plant Cell,29,3198–3213.
Kajala, K., Gouran, M., Shaar-Moshe, L., Mason, G. A., Rodriguez-Medina, J., Kawa, D. and Brady, S. M. (2021). Innovation, conservation, and repurposing of gene function in root cell type development.Cell,184, 3333–3348.
Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., Batool, N. and Mazhar, R. (2018) Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J. Plant Nutr., 41, 526–538.
Kerbab, S.,Silini, A.,Chenari, B.A.,Cherif-Silini, H.,Eshelli, M., El Houda, R.N. and Belbahri, L. (2021). Mitigation of NaCl stress in wheat by rhizosphere engineering using salt habitat adapted PGPR halotolerant bacteria. Appl. Sci., 11, 1034.
Khalilzadeh, R., Seyed, S.R. and Jalilian, J. (2017). Growth, physiological status, and yield of salt stressed wheat (Triticumaestivum L.) plants affected by biofertilizer and cycocel applications. Arid. Land Res. Manag., 32, 71–90.
Khan, H. A, Sharma, N., Siddique, K. H. M., Colmer, T. D., Sutton, T. and Baumann, U. (2023) Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes. Front. Plant Sci. 14, 1191457.
Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R. and Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot., 35, 64–70.
Korver, R. A., van den Berg, T., Meyer, A. J., Galvan-Ampudia, C. S., tenTusscher, K. H. W. J. and Testerink, C. (2020). Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant, Cell and Environment,43, 143–158.
Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L. and Mathew, M.K. (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J. Exp. Bot., 62, 4215–4228.
Kuang, L., Shen, Q., Wu, L., Yu, J., Fu, L., Wu, D. and Zhang, G. (2019). Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environ. Exp. Bot., 160, 59–70.
Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S. and Verma, J.P. (2020) Plant growth-promoting bacteria:Biological tools for the mitigation of salinity stress in plants. Front. Microbiol., 11, 1216.
Larcher, W. (2003). Physiological Plant Ecology, 4th ed.; Springer-Verlag: Heidelberg/Berlin, Germany; New York, (USA).
Li, C., Mur, L. A. J., Wang, Q., Hou, X., Zhao, C. and Chen, Z. (2022). ROS scavenging and ion homeostasis is required for the adaptation of halophyte Kareliniacaspia to high salinity. Front. Plant Sci. 13, 979956.
Li, P., Yang, X., Wang, H., Pan, T., Wang, Y., Xu, Y. and Yang, Z. (2021). Genetic control of root plasticity in response to salt stress in maize. Theoretical and Applied Genetics,134, 1475–1492.
Liu, S. and Zheng, J. (2024). Adaptive strategies based on shrub leaf-stem anatomy and their environmental interpretations in the eastern Qaidam Basin. BMC Plant Biol., 24, 323.
Malakar, P. and Chattopadhyay, D. (2021). Adaptation of plants to salt stress: the role of the ion transporters. J. Plant Biochem. Biotechnol. 30, 668–683.
Meena, K.K., Bitla, U.M., Sorty, A.M., Singh, D.P., Gupta, V.K., Wakchaure, G.C. and Kumar, S. (2020). Mitigation of salinity stress in wheat seedlings due to the application of phytohormone-rich culture filtrate extract of methylotrophic actinobacterium Nocardioides sp. NIMMe6. Front. Microbiol., 11, 2091.
Morton, M.J.L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S. and Tester, M. (2019), Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant J., 97, 148-163.
Munns, R. and Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? Tansley insight. New Phytologist., 208, 668–673.
Munns, R. and Passioura, J.B. (1984). Hydraulic resistance of plants. Effects of NaCl in barley and lupin. Aust. J. Plant Physiol. 11, 351–359.
Munns, R. and Termaat, A. (1986). Whole-plant responses to salinity. Aust. J. Plant Physiol. 13, 143–160.
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.
Ondrašek, G. (2019). Irrigation in Agroecosystems; IntechOpen: London, (UK).
Ondrasek, G.,BubaloKovačić, M.,Carević, I.,Štirmer, N.,Stipičević, S.,Udiković-Kolić, N.,Filipović, V.,Romić, D. and Rengel, Z. (2021). Bioashesand their potential for reuse to sustain ecosystem services and underpin circular economy. Renew. Sustain. Energy Rev., 151, 111540.
Ondrasek, G. and Rengel, Z. (2021). Environmental salinization processes: detection, implications & solutions. Sci. Total Environ. 754, 142432.
Ondrasek, G., Rengel, Z., Petosic, D., Filipovic, V. (2014). Land and water management strategies for the improvement of crop production. Emerging Technologies and Management of Crop Stress Tolerance, 2, 291–313.
Pandey, K., Lahiani, M.H., Hicks, V.K., Keith Hudson, M., Green, M.J. and Khodakovskaya, M. (2018). Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLOS ONE, 13, e0202274.
Parkash, V. and Singh, S. (2020). Potential of biochar application to mitigate salinity stress in eggplant. Hortc. Sci., 55, 1946–1955.
Pérez-Gómez, J.D., Abud-Archila, M., Villalobos-Maldonado, J.J.,Enciso-Saenz, S., Hernández de, L.H., Ruiz-Valdiviezo, V.M. and Gutiérrez-Miceli, F.A. (2017). Vermicompost and vermiwash minimized the influence of salinity stress on growth parameters in potato plants. Compost Sci. Util., 25, 282–287. Google Scholar
Rahman, M. U., Ijaz, M., Qamar, S., Bukhari, S. A. and Malik, K. (2018). Abiotic stress signaling in rice crop. Amsterdam, Netherlands: Elsevier.
Rajendran, K., Tester, M. and Roy, S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 32, 237–249.
Rasheed, F., Anjum, N.A., Masood, A., Sofo, A. and Khan, N.A. (2020). The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J. Plant Growth Regul., 30, 1–4.
Rossi, L., Francini, A., Minnocci, A. and Sebastiani, L. (2015). Salt stress modifies apoplastic barriers in olive (Olea europaea L.): A comparison between a salt-tolerant and a salt-sensitive cultivar. Sci. Hortic., 192, 38–46.
Ruiz-Lau, N., Oliva-Llaven, M.A., Montes-Molina, J.A. and Gutiérrez-Miceli, F.A. (2020). Mitigation of salinity stress by using the vermicompost and vermiwash.Ecological and Practical Applications for Sustainable Agriculture; Springer, Singapore, pp. 345–356.
Sachdev S., Ansari, S.A., Ansari M.I., Fujita M. and Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants,10, 277.
Shahid, S.A., Zaman, M. and Heng, L. (2018). Salinity and sodicity adaptation and mitigation options. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, pp. 55–89.
Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Appl. Sci., 10, 7326.
Siew, R. and Klein, C.R. (1969). The effect of NaCl on some metabolic and fine structural changes during the greening of etiolated leaves. J. Cell Biol., 37, 590–596. Google Scholar
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. and Savoure, A. (2015). Diversity, distribution and roles of osmo-protective compounds accumulated in halophytes under abiotic stress. Ann. Bot., 115, 433–447.
Sophie de Dorlodot, Forster, B., Pagès, L., Price, A., Tuberosa, R. and Draye, X. (2007) Root system architecture: opportunities and constraints for genetic improvement of crops.Trends in Plant Science, 12, (10), 474-481.
Sweetman, C., Khassanova, G., Miller, T. K., Booth, N. J., Kurishbayev, A. and Jatayev, S. (2020). Salt-induced expression of intracellular vesicle trafficking genes, CaRab-GTP, and their association with Na+ accumulation in leaves of chickpea (Cicer arietinum L.). BMC Plant Biol. 20, 183. Google Scholar
Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K. and Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11, 1195–1206.
Vaahtera, L., Schulz, J. and Hamann, T. (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants,5, 924–932.
Vadez, V., Krishnamurthy, L., Thudi, M., Anuradha, C., Colmer, T. D. and Turner, N. C. (2012). Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol. Breed.30, 9–21.
Verma, S., Negi, N. P., Pareek, S., Mudgal, G. and Kumar, D. (2022). Auxin response factors in plant adaptation to drought and salinity stress.Physiologia plantarum, 174(3) e13714.
Wolf, S., Hematy, K. and Hofte, H. (2012). Growth control and cell wall signaling in plants. Annual Review of Plant Biology,63, 381–407.
Xie, W., Zhang, X., Wang, T. and Hu, J. (2012). Botany, traditional uses, phytochemistry and pharmacology of Apocynumvenetum L. (Luobuma): A review. J. Ethnopharmacol. 141, 1–8.
Yan, J., Liu, Y., Yang, L., He, H., Huang, Y., Fang, L. and Zhang, A. (2021). Cellwallβ-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Molecular Plant,14,411–425.
Zaman, M., Shahid, S.A. and Heng, L. (2018). Irrigation systems and zones of salinity development. in: guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham.
Zhao, C., Zayed, O., Zeng, F., Liu, C., Zhang, L., Zhu, P. and Zhu, J. K. (2019). Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis.The New Phytologist,224, 274–290.
Zhao, Q. (2016). Lignification: Flexibility, biosynthesis and regulation. Trends in Plant Science,21, 713–721.
Zolla, G., Heimer, Y. M. and Barak, S. (2010). Mild salinity stimulates astress-induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany,61, 211–224.