2023, Issue 1, Volume 15

PHYSIOLOGICAL, BIOCHEMICAL AND MOLECULAR CHANGES UNDER HEAT STRESS IN BREAD WHEAT

Pooja Sihag, Vijeta Sagwal and Upendra Kumar*

Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar- 125004, India

Email: baliyan.upenda@gmail.com

Received-06.01.2023, Revised-18.01.2023, Accepted-28.01.2023

Abstract: Global warming is a major issue of concern for the last few years, as it affects the growth and development of the cropthat reduced crop productivity. Among the crops, wheat is facing threat to high temperatures which is a primary source of food for the large population in developing countries. Though, plants have developed numerous mechanisms to adapt to the rising temperature, the negative impact of heat stress on wheat production is high. This review focused on the major effects of heat stress on the physiological and biochemical parameters of wheat. Also, the miRNAs expression under several high-temperature treatments and their involvement in the regulation of various heat stress-related genes were noticed.

Keywords: High temperature, miRNAs, heat tolerant, osmolytes, global warming

References

Aiqing, S., Somayanda, I., Sebastian, S. V., Singh, K., Gill, K., Prasad, P. V. V. and Jagadish, S. K. (2018). Heat stress during flowering affects time of day of flowering, seed set, and grain quality in spring wheat. Crop Science58(1), 380-392.

Google Scholar

Akter, N. and Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for sustainable development, 37(5), 1-17.

Google Scholar

Almeselmani, M., Deshmukh, P. and Sairam, R. (2009). High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agronomica Hungarica57(1): 1-14.

Google Scholar

Amani, I., Fischer, R. A. and Reynolds, M. P. (1996). Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. Journal of Agronomy and Crop Science176(2), 119-129.

Google Scholar

Ashraf, M. H. P. J. C. and Harris, P. J. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica51(2), 163-190.

Google Scholar

Bahuguna, R. N. and Jagadish, K. S. (2015). Temperature regulation of plant phenological development. Environmental and Experimental Botany111, 83-90.

Google Scholar

Bajji, M., Kinet, J. M. and Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant growth regulation36(1), 61-70.

Google Scholar

Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual review of plant biology59: 89.

Google Scholar

Bala, P. and Sikder, S. (2017). Evaluation of heat tolerance of wheat genotypes through membrane thermostability test. MAYFEB Journal of Agricultural Science2: 1-6.

Google Scholar

Blum, A. and Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science21(1): 43-47.

Google Scholar

Caverzan, A., Casassola, A. and Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and molecular biology39: 1-6.

Google Scholar

Chunduri, V., Kaur, A., Kaur, S., Kumar, A., Sharma, S., Sharma, N. and Garg, M. (2021). Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day–night combined heat stresses during grain filling in wheat. Frontiers in plant science, 973.

Google Scholar

Deryng, D., Conway, D., Ramankutty, N., Price, J. and Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters9(3), 034011.

Google Scholar  

Dhanda, S. and Munjal, R. (2009). Cell membrane stability: combining ability and gene effects under heat stress conditions. Cereal Research Communications37(3), 409-417.

Google Scholar

Farooq, M., Bramley, H., Palta, J. A. and Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences30(6): 491-507.

Google Scholar

Farooq, M., Wahid, A., Lee, D. J., Ito, O. and Siddique, K. H. (2009). Advances in drought resistance of rice. Critical Reviews in Plant Sciences, 28(4): 199-217.

Google Scholar

Gautam, A., Agrawal, D., SaiPrasad, S. V. and Jajoo, A. (2014). A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiology and Molecular Biology of Plants20(4): 533-537.

Google Scholar

Goswami, S., Kumar, R. R. and Rai, R. D. (2014). Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress. Australian Journal of Crop Science8(5): 697-705.

Google Scholar

Hare, P. D. and Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant growth regulation21(2):79-102.

Google Scholar

Hasan, M. A., Ahmed, J. U., Bahadur, M. M., Haque, M. M. and Sikder, S. (2007). Effect of late planting heat stress on membrane thermostability, proline content and heat susceptibility index of different wheat cultivars. Journal of the National Science Foundation of Sri Lanka35(2).

Google Scholar

Hedhly, A., Hormaza, J. I. and Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in plant science14(1): 30-36.

Google Scholar

Ivashuta, S., Banks, I. R., Wiggins, B. E., Zhang, Y., Ziegler, T. E., Roberts, J. K. and Heck, G. R. (2011). Regulation of gene expression in plants through miRNA inactivation. PloS one6(6): e21330.

Google Scholar

Kalaji, H. M., Bosa, K., Kościelniak, J. and Żuk-Gołaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany73: 64-72.

Google Scholar

Kaushal, N., Bhandari, K., Siddique, K. H. and Nayyar, H. (2016). Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent food & agriculture2(1): 1134380.

Google Scholar

Khan, A., Ahmad, M., Shah, M. K. N. and Ahmed, M. (2020). Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot52(6): 1981-1988.

Google Scholar

Kumar, R. R., Goswami, S., Shamim, M., Mishra, U., Jain, M., Singh, K. and Praveen, S. (2017). Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Frontiers in Plant Science8: 1603.

Google Scholar

Kumar, R. R., Goswami, S., Sharma, S. K., Kala, Y. K., Rai, G. K., Mishra, D. C. and Rai, R. D. (2015a). Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). Omics: a journal of integrative biology19(10): 632-647.

Google Scholar

Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Singh, S. D. and Rai, R. D. (2013). Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of plant biochemistry and biotechnology22(1):16-26.

Google Scholar

Kumar, R. R., Pathak, H., Sharma, S. K., Kala, Y. K., Nirjal, M. K., Singh, G. P. and Rai, R. D. (2015b). Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Functional & Integrative Genomics15(3):323-348.

Google Scholar

Kumari, M., Pudake, R. N., Singh, V. P. and Joshi, A. K. (2013). Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica190(1):87-97.

Google Scholar

Li, C. and Zhang, B. (2016). MicroRNAs in control of plant development. Journal of cellular physiology231(2): 303-313.

Google Scholar

Li, J. F., Chung, H. S., Niu, Y., Bush, J., McCormack, M. and Sheen, J. (2013). Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. The Plant Cell25(5): 1507-1522.

Google Scholar     

Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. and Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science319(5863), 607-610.

Google Scholar

Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J. I., Damsz, B. and Bressan, R. A. (2002). Does proline accumulation play an active role in stress‐induced growth reduction? The plant journal31(6): 699-712.

Google Scholar

Mathur, S., Agrawal, D. and Jajoo, A. (2014). Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology137: 116-126.

Google Scholar

Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J., Kaspari, M., Helliker, B. R. and Enquist, B. J. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature plants2(9): 1-9.

Google Scholar

Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R. and Joshi, A. K. (2013). Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field crops research151: 19-26.

Google Scholar

Morales, D., Rodríguez, P., Dell’Amico, J., Nicolas, E., Torrecillas, A. and Sánchez-Blanco, M. J. (2003). High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum47(2): 203-208.

Google Scholar

Mullan, D. and Pietragalla, J. (2012). Leaf relative water content. Physiological Breeding II: A field guide to wheat phenotyping, 25-27.

Google Scholar

Nandha, A. K., Mehta, D. R., Tulsani, N. J., Umretiya, N., Delvadiya, N. and Kachhadiya, H. J. (2019). Transcriptome analysis of response to heat stress in heat tolerance and heat susceptible wheat (Triticum aestivum L.) genotypes. Journal of Pharmacognosy and Phytochemistry8(2): 275-284.

Google Scholar

Papageorgiou, G. C. and Murata, N. (1995). The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynthesis Research44(3): 243-252.

Google Scholar

Prasad, P. V. and Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology41(12): 1261-1269.

Google Scholar

Prasad, P. V., Pisipati, S. R., Ristic, Z., Bukovnik, U. R. S. K. A. and Fritz, A. K. (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop science, 48(6): 2372-2380.

Google Scholar

Qaseem, M. F., Qureshi, R. and Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific reports9(1): 1-12.

Google Scholar

Ragupathy, R., Ravichandran, S., Mahdi, M., Rahman, S., Huang, D., Reimer, E. and Cloutier, S. (2016). Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Scientific reports6(1): 1-15.

Google Scholar

Rahman, M. A., Chikushi, J., Yoshida, S. and Karim, A. J. M. S. (2009). Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh Journal of Agricultural Research34(3): 360-372.

Google Scholar

Ranjeet, R. K., Suneha, G., Sushil, K. S., Khushboo, S., Kritika, A. G., Narender, K. and Raj, D. R. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry4(4): 83-91.

Google Scholar

Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M. and Cloutier, S. (2019). MicroRNA-guided regulation of heat stress response in wheat. BMC genomics20(1): 1-16.

Google Scholar

Rehman, S. U., Bilal, M., Rana, R. M., Tahir, M. N., Shah, M. K. N., Ayalew, H. and Yan, G. (2016). Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum) genotypes under conditions of heat and drought. Crop and Pasture Science67(7):712-718.

Google Scholar

Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I. and Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Functional Plant Biology21(6): 717-730.

Google Scholar

Ristic, Z., Bukovnik, U., Prasad, P. V. and West, M. (2008). A model for prediction of heat stability of photosynthetic membranes. Crop Science48(4): 1513-1522.

Google Scholar

Rizza, F., Pagani, D., Gut, M., Prášil, I. T., Lago, C., Tondelli, A. and Stanca, A. M. (2011). Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Science51(6): 2759-2779.

Google Scholar

Sailaja, B., Mangrauthia, S. K., Voleti, S. R., Subrahmanyam, D. and Ravindra Babu, V. (2017). Expression analysis of novel microRNAs in rice during high temperature stress. Bulletin of Environment, Pharmacology and Life Sciences6(1): 225-229.

Google Scholar

Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M. S., Hussain, M. and Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One15(5): e0232974.

Google Scholar

Shah, N. H. and Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and soil257(1): 219-226.

Google Scholar

Shahid, M., Saleem, M. F., Anjum, S. A., Shahid, M. and Afzal, I. (2017). Effect of terminal heat stress on proline, secondary metabolites and yield components of wheat (Triticum aestivum L.) genotypes. Philipp. Agric. Sci100: 278-286.

Google Scholar

Sharma, D. K., Andersen, S. B., Ottosen, C. O. and Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia plantarum153(2): 284-298.

Google Scholar

Shrestha, K. N. (2011). Analysis of betaine aldehyde dehydrogenase encoding genes in wheat (Doctoral dissertation, Southern Cross University).

Google Scholar

Siebert, S., Ewert, F., Rezaei, E. E., Kage, H. and Graß, R. (2014). Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environmental Research Letters9(4): 044012.

Google Scholar

Sihag, P., Sagwal, V., Kumar, A., Balyan, P., Mir, R. R., Dhankher, O. P. and Kumar, U. (2021). Discovery of miRNAs and development of heat-responsive miRNA-SSR markers for characterization of wheat germplasm for terminal heat tolerance breeding. Frontiers in genetics12.

Google Scholar

Smirnoff, N. and Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry28(4), 1057-1060.

Google Scholar

Song, W. F., Zhao, L. J., Zhang, X. M., Zhang, Y. M., Li, J. L., Zhang, L. L. and Xiao, Z. M. (2015). Effect of timing of heat stress during grain filling in two wheat varieties under moderate and very high temperature. Indian Journal of Genetics and Plant Breeding75(1), 121-124.

Google Scholar

Soni, A. and Munjal, R. (2023). Characterisation and evaluation of wheat genetic resources for heat stress tolerance using stay-green traits. Crop and Pasture Science.

Google Scholar

Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C. and Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology170: 206-215.

Google Scholar

Thalmann, M. and Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist214(3): 943-951.

Google Scholar

Thomason, K., Babar, M. A., Erickson, J. E., Mulvaney, M., Beecher, C. and MacDonald, G. (2018). Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoS One13(6): e0197919.

Google Scholar

Verbruggen, N. and Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids35(4): 753-759.

Google Scholar

Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell136(4): 669-687.

Google Scholar

Wang, G. P., Hui, Z., Li, F., Zhao, M. R., Zhang, J. and Wang, W. (2010). Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 4(3): 213-222.

Google Scholar

Webber, H., Ewert, F., Kimball, B. A., Siebert, S., White, J. W., Wall, G. W. and Gaiser, T. (2016). Simulating canopy temperature for modelling heat stress in cereals. Environmental Modelling & Software77: 143-155.

Google Scholar

Yang, J., Sears, R. G., Gill, B. S. and Paulsen, G. M. (2002). Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica126(2): 185-193.

Google Scholar

Yang, J., Sears, R. G., Gill, B. S. and Paulsen, G. M. (2002). Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica126(2): 185-193.

Google Scholar

Zhang, B. and Unver, T. (2018). A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Science274: 193-200.

Google Scholar

Zhou, M. and Luo, H. (2013). MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant molecular biology83(1): 59-75.

Google Scholar