2019, Issue 4, Volume 11

INVESTIGATION ON QUALITY OF COIR WASTES BIOCHAR FOR SOIL AMENDMENT AND SOIL CARBON SEQUESTRATION APPLICATIONS

Shalini Ramesh* and Pugalendhi Sundararaju1

Ph.D Scholar, Department of Bioenergy, AEC & RI, Tamil Nadu Agricultural University, Coimbatore- 641 003, Tamil Nadu, India

1Professor, Department of Bioenergy, AEC & RI, Tamil Nadu Agricultural University,

Coimbatore- 641 003, Tamil Nadu, India

Received-12.03.2019, Revised-15.04.2019

Abstract: In this paper, coir wastes biochar was prepared from coirwaste biomass at low temperatures (400-450°C) and the quality of the biochar was tested with reference to the International Biochar Initiative (IBI) criteria for soil amendment and soil carbon sequestration applications. The coir wastes biochar had mass yield (20.02%), H/Corg (0.48), O/C (0.59), pH (7.28) and EC (0.09 dS cm-1). Carbon (%) of the coir waste biochar was found to be increased from 34.52% to 44.98%. The nitrogen (%) and sulphur (%) was found to be low in the coirwastes biochar compared to the raw biomass, indicating that it would produce less NOx and SOx emissions during combustion. The total organic carbon (%) was notably increased from 18% to 52% and follows class 2 biochars (≥30<60%) based on the criteria given by IBI. It is observed from the results that the thermo-chemically converted coir wastes biochar had greater potential and stability to sequester organic carbon in the soil because H/Corg of the biochar was found to be <0.70 and all other characteristics were in the threshold criteria as declared by IBI.

Keywords: Coir wastes biomass, Biochar, Organic carbon, Stability, IBI criteria 

References

Ahmad, M. and Subawi, H. (2013). New Van Krevelen diagram and its relation with the heating value of biomass. Res.J.Agric.Environ. Manag, 2, 295-301.

Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M. and Usman, A.R.A (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol., 131, 374-379.

ASTM D1762-84. 1990. Standard method for chemical analysis of wood charcoal.

Butler, J.H. and Montzka, S.A (2015). The NOAA Annual Greenhouse Gas Index (AGGI). Published online http://www.esrl.noaa.gov/gmd/aggi/aggi.html.

Correa, C. R., Hehr, T., Rauscher, Y., Alhnidi, M. J and Kruse, A. (2019). Biomass Carbonization – An experimental comparison between pyrolysis and hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis. doi:10.1016/j.jaap. 2019.03.007.

Djousse Kanouo, B. M., Allaire, S. E. and Munson, A. D (2017). Quality of biochars made from eucalyptus tree bark and corncob using a pilot-scale retort kiln. Waste and biomass valorization, 9(6), 899–909. doi:10.1007/s12649-017-9884-2 

Iaquaniello, G., Centi, G., Salladini, A., Palo, E., Perathoner, S and Spadaccini, L. (2017).Waste-to-methanol: process and economics assessment. Bioresour. technol. 243, 611-619.

IBI. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. IBI biochar standards. (Version 2.1).

Le Quere, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., O’Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J. and Zaehle, S. (2016). Global Carbon Budget. Earth Syst. Sci. Data, 8, 605-649, https://doi.org/10.5194/essd-8-605-2016.

Liu, W.J, Jaing, H and Yu, H.Q (2015). Development of biochar based functional materials toward a sustainable platform carbon material. Chem.Rev.115(2), 12251-12285. American chemical society.

Neves, D., Thunman, H., Matos, A., Tarelho, L. and Gomez Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Prg. Energy Combust.Sci.37, 611-630.

Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I and Pant, D. (2017). Waste biorefineries: enabling circular economies in developing countries. Bioresour. technol. 241, 1101-1117.

Prabha, B., Pugalendhi, S. and Subramanian, P. (2015). Design and development of semi-indirect non-electric pyrolytic reactor for biochar production from farm waste (Vol. 85). Indian Journal of Agricultural Sciences 85(4):585-591.

Rayment, G.E. and Higginson, F.R. (1992). Australian Laboratory Handbook of Soil and Water Chemical Methods. Reed International Books, Australia/ Inkata Press, Port Melbourne.

Spokas, K.A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289-303.

Unrean, P., Lai Fui, B.C., Rainawati, E. and Acda, M (2018). Comparitive techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies. Energy. doi:10.1016/j.energy.2018.03.112.

US Composting Council and US Department of Agriculture (2001). Test methods for the  examination of composting and compost. (TMECC) Thompson W.H. (ed.)  http://compostingcouncil. org/tmecc/ (Accessed January 2012).

Weidemann, E., Buss, W., Edo, M., Masek, O and Jansson, S. (2017). Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar—a screening study. Environmental Science and Pollution Research, 25(4), 3933–3940. doi:10.1007/s11356-017-0612-z.