2025, Issue 2, Volume 17

IMMUNOMODULATORY PROPERTIES OF PHYTOCOMPOUNDS

Blanca Liliana Sánchez-Rodríguez1,2, David Pedroza-Escobar*1, Lisset-Esmeralda González-Manjarrez2, Alejandra Torres-Flores2, Irais Castillo-Maldonado1, DealmyDelgadillo-Guzmán2, Tania González-Cortés1, Cecilia Hernández-Morales3, Pedro IV González-Luna3, Erika Flores-Loyola4, Agustina Ramírez-Moreno4, Joaquín Avalos-Soto5 and Miguel Ángel Téllez-López5

1Centro de Investigacion Biomedica. Universidad Autonoma de Coahuila. Unidad Laguna.

Torreon, Coahuila, 27000, Mexico

2Facultad de Medicina. Universidad Autonoma de Coahuila. Unidad Laguna.

Torreon, Coahuila, 27000, Mexico

 3Facultad de Odontologia. Universidad Autonoma de Coahuila. Unidad Laguna.

Torreon, Coahuila, 27000, Mexico

 4Facultad de Ciencias Biologicas, Unidad Laguna. Torreon, Coahuila, 27087, Mexico

 5Cuerpo Académico Farmacia y Productos Naturales, Facultad de Ciencias Químicas,

Universidad Juárez del Estado de Durango, Gómez Palacio, Mexico.

Email: dpedroza@uadec.edu.mx

Received-02.02.2025, Revised-15.02.2025, Accepted-28.02.2025

Abstract: Phytocompounds are naturally occurring bioactive molecules synthesized by plants that have demonstrated diverse pharmacological properties, including immunomodulatory effects. These compounds are classified into several categories such as polyphenols, alkaloids, saponins, terpenoids, glycosides, and phytosterols. Phytocompounds can modulate immune responses through mechanisms involving cytokine regulation, immune cell activation, enhancement of antigen presentation, and modulation of inflammatory signaling pathways. This review aims to provide a comprehensive overview of the immunomodulatory properties of several notable phytocompounds, including quercetin, tannic acid, curcumin, vincristine, Quillaja saponaria, ginsenosides, betulinic acid, and resveratrol. The therapeutic potential of these compounds is described in contexts such as vaccine adjuvants, treatment of autoimmune and inflammatory disorders, cancer therapy, and infectious disease management. Despite their promising biological activities, challenges remain in terms of standardization, bioavailability, and understanding of their precise mechanisms of action. Future research should focus on improving phytocompound formulations, elucidating their immunomodulatory mechanisms, and conducting rigorous clinical trials to optimize their therapeutic applications.

Keywords: Phytocompounds, Immunomodulation, Curcumin, Vincristine, Quillaja saponaria, Ginsenosides, Resveratrol

REFERENCES

Ahmad, I., Husain, F.M., Maheshwari, M. and Zahin, M. (2014). Medicinal Plants and Phytocompounds: A Potential Source of Novel Antibiofilm Agents. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg.

Google Scholar

Almutairi, F.M., Ullah, A., Althobaiti, Y.S., Irfan, H.M., Shareef, U., Usman, H. and Ahmed, S. (2022). A Review on Therapeutic Potential of Natural Phytocompounds for Stroke. Biomedicines. 10(10):2566. doi: 10.3390/biomedicines10102566. PMID: 36289828; PMCID: PMC9599280.

Google Scholar

Balasubramaniam, M., Sapuan, S., Hashim, I.F., Ismail, N.I., Yaakop, A.S., Kamaruzaman, N.A. and Ahmad Mokhtar, A.M. (2024). The properties and mechanism of action of plant immunomodulators in regulation of immune response – A narrative review focusing on Curcuma longa L., Panax ginseng C. A. Meyer and Moringa oleifera Lam. Heliyon. 10(7): e28261. doi: 10.1016/j.heliyon. 2024. e28261. PMID: 38586374; PMCID: PMC10998053.

Google Scholar

Becker, S., Kiecke, C., Schäfer, E., Sinzig, U., Deuper, L., Trigo-Mourino, P., Griesinger, C., Koch, R., Rydzynska, Z., Chapuy, B., von Bonin, F., Kube, D., Venkataramani, V., Bohnenberger, H., Leha, A., Flach, J., Dierks, S., Bastians, H., Maruschak, B., Bojarczuk, K., Taveira, M.O., Trümper, L., Wulf, G.M. and Wulf, G.G. (2020). Destruction of a Microtubule-Bound MYC Reservoir during Mitosis Contributes to Vincristine’s Anticancer Activity. Mol Cancer Res. 18(6):859-872. doi: 10.1158/1541-7786.MCR-19-1203. Epub 2020 Mar 11. PMID: 32161139.

Google Scholar

Bergman, M.E., Davis, B. and Phillips, M.A. (2019). Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action. Molecules. 24(21):3961. doi: 10.3390/molecules24213961. PMID: 31683764; PMCID: PMC6864776.

Google Scholar

Bhambhani, S., Kondhare, K.R. and Giri, A.P. (2021). Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules. 26(11):3374. doi: 10.3390/molecules 26113374. PMID: 34204857; PMCID: PMC8199754.

Google Scholar

Bozzuto, G., Calcabrini, A., Colone, M., Condello, M., Dupuis, M.L., Pellegrini, E. and Stringaro, A. (2024). Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules. 29(16):3784. doi: 10.3390/molecules 29163784. PMID: 39202863; PMCID: PMC11357218.

Google Scholar

Chauhan, A.K., Jakhar, R., Paul, S. and Kang, S.C. (2014). Potentiation of macrophage activity by thymol through augmenting phagocytosis. Int Immunopharmacol. 18(2):340-6. doi: 10.1016/j.intimp.2013.11.025. Epub 2013 Dec 5. PMID: 24316253; PMCID: PMC7185619.

Google Scholar

Cherian, A., Vadivel, V., Thiruganasambandham, S. and Madhavankutty, S. (2021). Phytocompounds and their molecular targets in immunomodulation: a review. J Basic Clin Physiol Pharmacol. 34(5):577-590. doi: 10.1515/jbcpp-2021-0172. PMID: 34786892.

Google Scholar

Çoban, E.A., Tecimel, D., Şahin, F. and Deniz, A.A.H. (2020). Targeting Cancer Metabolism and Cell Cycle by Plant-Derived Compounds. Adv Exp Med Biol. 1247:125-134. doi: 10.1007/5584_2019_449. PMID: 31749136.

Google Scholar

Conte, R., Marturano, V., Peluso, G., Calarco, A. and Cerruti, P. (2017). Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. Int J Mol Sci. 18(4):709. doi: 10.3390/ijms18040709. PMID: 28350317; PMCID: PMC5412295.

Google Scholar

Di Petrillo, A., Orrù, G., Fais, A. and Fantini, M.C. (2022). Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res. 36(1):266-278. doi: 10.1002/ptr.7309. Epub 2021 Oct 28. PMID: 34709675; PMCID: PMC8662201.

Google Scholar

Diniz do Nascimento, L., Moraes, A.A.B., Costa, K.S.D., Pereira Galúcio, J.M., Taube, P.S., Costa, C.M.L., Neves Cruz, J., de Aguiar Andrade, E.H. and Faria, LJG. (2020). Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules. 10(7):988. doi: 10.3390/biom10070988. PMID: 32630297; PMCID: PMC7407208.

Google Scholar

Elendu, C. (2024). The evolution of ancient healing practices: From shamanism to Hippocratic medicine: A review. Medicine (Baltimore). 103(28): e39005. doi: 10.1097/MD.0000000000039005. PMID: 38996102; PMCID: PMC11245246.

Google Scholar

Erb, M. and Kliebenstein, D.J. (2020). Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 184(1):39-52. doi: 10.1104/pp.20.00433. Epub 2020 Jul 7. PMID: 32636341; PMCID: PMC7479915.

Google Scholar

Esmeeta, A., Adhikary, S., Dharshnaa, V., Swarnamughi, P., Ummul Maqsummiya, Z., Banerjee, A., Pathak, S. and Duttaroy, A.K. (2022). Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother. 2022 Sep; 153:113384.

Google Scholar

Fan, W., Fan, L., Wang, Z., Mei, Y., Liu, L., Li, L., Yang, L. and Wang, Z. (2024). Rare ginsenosides: A unique perspective of ginseng research. J Adv Res. 66:303-328. doi: 10.1016/j.jare.2024.01.003. Epub 2024 Jan 7. PMID: 38195040; PMCID: PMC11674801.

Google Scholar

Fleck, J.D., Betti, A.H., da Silva, F.P., Troian, E.A., Olivaro, C., Ferreira, F. and Verza, S.G. (2019). Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules. 24(1):171. doi: 10.3390/molecules24010171. PMID: 30621160; PMCID: PMC6337100.

Google Scholar

Galiniak, S., Aebisher, D. and Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochim Pol. 66(1):13-21. doi: 10.18388/abp.2018_2749. PMID: 30816367.

Google Scholar

Gasmi, A., Shanaida, M., Oleshchuk, O., Semenova, Y., Mujawdiya, P.K., Ivankiv, Y., Pokryshko, O., Noor, S., Piscopo, S., Adamiv, S. and Bjørklund, G. (2023). Natural Ingredients to Improve Immunity. Pharmaceuticals (Basel). 16(4):528. doi: 10.3390/ph16040528. PMID: 37111285; PMCID: PMC10143734.

Google Scholar

Gayathiri, E, Prakash, P., Ahamed, M., Pandiaraj, S., Venkidasamy, B., Dayalan, H., Thangaraj, P., Selvam, K., Chaudhari, S.Y., Govindasamy, R. and Thiruvengadam, M. (2024). Multitargeted pharmacokinetics, molecular docking and network pharmacology-based identification of effective phytocompounds from Sauropus androgynus (L.) Merr for inflammation and cancer treatment. J Biomol Struct Dyn. 42(15):7883-7896. doi: 10.1080/07391102.2023.2243335. Epub 2023 Aug 3. PMID: 37534448.

Google Scholar

Georgiou, N., Kakava, M.G., Routsi, E.A., Petsas, E., Stavridis, N., Freris, C., Zoupanou, N., Moschovou, K., Kiriakidi, S. and Mavromoustakos, T. (2023). Quercetin: A Potential Polydynamic Drug. Molecules. 28(24):8141. doi: 10.3390/molecules28248141. PMID: 38138630; PMCID: PMC10745404.               

Google Scholar

Güçlü-Ustündağ, O. and Mazza, G. (2007). Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 47(3):231-58. doi: 10.1080/10408390600698197. PMID: 17453922.

Google Scholar

Guo, X., Ji, J., Zhang, J., Hou, X., Fu, X., Luo, Y., Mei, Z. and Feng, Z. (2021). Anti-inflammatory and osteoprotective effects of Chikusetsusaponin Ⅳa on rheumatoid arthritis via the JAK/STAT signaling pathway. Phytomedicine. 93:153801. doi: 10.1016/j.phymed.2021.153801. Epub 2021 Oct 14. PMID: 34758437.

Google Scholar

Hiser, L., Herrington, B. and Lobert, S. (2008). Effect of noscapine and vincristine combination on demyelination and cell proliferation in vitro. Leuk Lymphoma. 49(8):1603-9. doi: 10.1080/10428190802213480. PMID: 18766974.

Google Scholar

Holland, S.M. and Vizi, E.S. (2002). Immunomodulation. Curr Opin Pharmacol. 2(4):425-7. doi: 10.1016/s1471-4892(02)00188-1. PMID: 12127875.

Google Scholar

Jang, J., He, Z., Huang, L., Hwang, J.Y., Kim, M.Y. and Cho, J.Y. (2024). Upregulation of NK cell activity, cytokine expression, and NF-κB pathway by ginsenoside concentrates from Panax ginseng berries in healthy mice and macrophage cell lines. J Ethnopharmacol. 335:118681. doi: 10.1016/j.jep.2024.118681. Epub 2024 Aug 8. PMID: 39121929.

Google Scholar

Jing, W., Xiaolan, C., Yu, C., Feng, Q. and Haifeng, Y. (2022). Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother. 154:113561. doi: 10.1016/j.biopha.2022.113561. Epub 2022 Aug 24. PMID: 36029537.

Google Scholar

Kaczmarek, B. (2020). Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials (Basel). 13(14):3224. doi: 10.3390/ma13143224. PMID: 32698426; PMCID: PMC7412100.

Google Scholar

Kataria, D. and Singh, G. (2024). Health benefits of ghee: Review of Ayurveda and modern science perspectives. J Ayurveda Integr Med. Jan-Feb;15(1):100819. doi: 10.1016/j.jaim.2023.100819. Epub 2024 Jan 5. PMID: 38181707; PMCID: PMC10789628.

Google Scholar

Khan, N. and Mukhtar, H. (2018). Tea Polyphenols in Promotion of Human Health. Nutrients. 11(1):39. doi: 10.3390/nu11010039. PMID: 30585192; PMCID: PMC6356332.

Google Scholar

Li, J., Li, F. and Jin, D. (2023). Ginsenosides are Promising Medicine for Tumor and Inflammation: A Review. Am J Chin Med. 51(4):883-908. doi: 10.1142/S0192415X23500416. Epub 2023 Apr 17. PMID: 37060192.

Google Scholar

Li, Y., Kong, D., Fu, Y., Sussman, M.R. and Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 148:80-89. doi: 10.1016/j.plaphy.2020.01.006. Epub 2020 Jan 7. PMID: 31951944.

Google Scholar

Lin, Y., Liu, H., Bu, L., Chen, C. and Ye, X. (2022). Review of the Effects and Mechanism of Curcumin in the Treatment of Inflammatory Bowel Disease. Front Pharmacol. 13:908077. doi: 10.3389/fphar.2022.908077. PMID: 35795556; PMCID: PMC9250976.

Google Scholar

Lou, H., Li, H., Zhang, S., Lu, H. and Chen, Q. (2021). A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules. 26(18):5583. doi: 10.3390/molecules26185583. PMID: 34577056; PMCID: PMC8468263.

Google Scholar

Luca, S.V., Macovei, I., Bujor, A., Miron, A., Skalicka-Woźniak, K., Aprotosoaie, A.C. and Trifan, A. (2020). Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr. 60(4):626-659. doi: 10.1080/10408398.2018.1546669. Epub 2019 Jan 7. PMID: 30614249.

Google Scholar

Merecz-Sadowska, A., Sitarek, P., Śliwiński, T. and Zajdel, R. (2020). Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci. 21(24):9605. doi: 10.3390/ijms21249605. PMID: 33339446; PMCID: PMC7766727.

Google Scholar

Mohanty, S.S., Sahoo, C.R., Paidesetty, S.K. and Padhy, R.N. (2023). Role of phytocompounds as the potential anti-viral agent: an overview. Naunyn Schmiedebergs Arch Pharmacol. 396(10):2311-2329. doi: 10.1007/s00210-023-02517-2. Epub 2023 May 9. PMID: 37160482; PMCID: PMC10169142.

Google Scholar

Mondal, S., Das, M., Debnath, S., Sarkar, B.K. and Babu, G. (2024). An overview of extraction, isolation and characterization techniques of phytocompounds from medicinal plants. Nat Prod Res. 1-23. doi: 10.1080/14786419.2024.2426059. Epub ahead of print. PMID: 39560050.

Google Scholar

Nelson, K.M., Dahlin, J.L., Bisson, J., Graham, J., Pauli, G.F. and Walters, M.A. (2017). The Essential Medicinal Chemistry of Curcumin. J Med Chem. 60(5):1620-1637. doi: 10.1021/acs.jmedchem.6b00975. Epub 2017 Jan 11. PMID: 28074653; PMCID: PMC5346970.

Google Scholar

Nik Mohamad Nek Rahimi, N., Natrah, I., Loh, J.Y., Ervin Ranzil, F.K., Gina, M., Lim, S.E., Lai, K.S. and Chong, C.M. (2022). Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics (Basel). 11(4):469. doi: 10.3390/antibiotics11040469. PMID: 35453220; PMCID: PMC9031819.

Google Scholar

Olanlokun, J.O., Okoro, P.O. and Olorunsogo, O.O. (2022). The roles of betulinic acid on circulating concentrations of creatine kinase and immunomodulation in mice infected with chloroquine-susceptible and resistant strains of Plasmodium berghei. J Parasit Dis. 46(1):124-132. doi: 10.1007/s12639-021-01407-9. Epub 2021 Jul 31. PMID: 35299933; PMCID: PMC8901915.

Google Scholar

Orozco-Nunnelly, D.A., Pruet, J., Rios-Ibarra, C.P., Bocangel Gamarra, E.L., Lefeber, T. and Najdeska, T. (2021).Characterizing the cytotoxic effects and several antimicrobial phytocompounds of Argemone mexicana. PLoS One. 16(4):e0249704. doi: 10.1371/journal.pone.0249704. Erratum in: PLoS One. 2023 Jun 23;18(6): e0287803. doi: 10.1371/journal.pone.0287803. PMID: 33826680; PMCID: PMC8026029.

Google Scholar

Pant, P., Pandey, S. and Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem Biodivers. 18(11): e2100345. doi: 10.1002/cbdv.202100345. Epub 2021 Oct 13. PMID: 34533273.

Google Scholar

Porro, C., Cianciulli, A., Trotta, T., Lofrumento, D.D. and Panaro, M.A. (2019). Curcumin Regulates Anti-Inflammatory Responses by JAK/STAT/SOCS Signaling Pathway in BV-2 Microglial Cells. Biology (Basel). 8(3):51. doi: 10.3390/biology8030051. PMID: 31252572; PMCID: PMC6784227.

Google Scholar

Ramos Mendonça-Filho, R. (2006). Bioactive Phytocompounds: New Approaches in the Phytosciences. In: Iqbal, A., Farrukh, A., Mohammad, O. (eds) Modern Phytomedicine: Turning Medicinal Plants into Drugs. Wiley, New York.

Google Scholar

Razavi, B.M., Ghasemzadeh Rahbardar, M. and Hosseinzadeh, H. (2021). A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother Res. 35(12):6489-6513. doi: 10.1002/ptr.7224. Epub 2021 Jul 26. PMID: 34312922.

Google Scholar

Ren, Z., Wang, L., Cui, J., Huoc, Z., Xue, J., Cui, H., Mao, Q. and Yang, R. (2013). Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie. 68(8):689-94. PMID: 24020126.

Google Scholar

Reyna-Margarita, H.R., Irais, C.M., Mario-Alberto, R.G., Agustina, R.M., Luis-Benjamín, S.G. and David, P.E. (2019). Plant Phenolics and Lectins as Vaccine Adjuvants. Curr Pharm Biotechnol. 20(15):1236-1243. doi: 10.2174/1389201020666190716110705. PMID: 31333121.

Google Scholar

Sadeghi, M., Dehnavi, S., Asadirad, A., Xu, S., Majeed, M., Jamialahmadi, T., Johnston, T.P. and Sahebkar, A. (2023). Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology. 31(3):1069-1093. doi: 10.1007/s10787-023-01136-w. Epub 2023 Mar 30. PMID: 36997729; PMCID: PMC10062691.

Google Scholar

Safarzadeh, E., Ataei, S., Akbari, M., Abolhasani, R., Baziar, M., Asghariazar, V. and Dadkhah, M. (2024). Quercetin ameliorates cognitive deficit, expression of amyloid precursor gene, and pro-inflammatory cytokines in an experimental models of Alzheimer’s disease in Wistar rats. Exp Gerontol. 193:112466. doi: 10.1016/j.exger.2024.112466. Epub 2024 May 31. PMID: 38821324.

Google Scholar

Shukla, R., Singh, A. and Singh, K.K. (2024). Vincristine-based nanoformulations: a preclinical and clinical studies overview. Drug Deliv Transl Res. 14(1):1-16. doi: 10.1007/s13346-023-01389-6. Epub 2023 Aug 8. PMID: 37552393; PMCID: PMC10746576.

Google Scholar

Sohn, S.I., Rathinapriya, P., Balaji, S., Jaya Balan, D., Swetha, T.K., Durgadevi, R., Alagulakshmi, S., Singaraj, P. and Pandian, S. (2021). Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci. 22(23):12691. doi: 10.3390/ijms222312691. PMID: 34884496; PMCID: PMC8657749.

Google Scholar

Stanisz, M., Stanisz, B.J. and Cielecka-Piontek, J. (2024). A Comprehensive Review on Deep Eutectic Solvents: Their Current Status and Potential for Extracting Active Compounds from Adaptogenic Plants. Molecules. 29(19):4767. doi: 10.3390/molecules29194767. PMID: 39407698; PMCID: PMC11478271.

Google Scholar

Timilsena, Y.P., Phosanam, A. and Stockmann, R. (2023). Perspectives on Saponins: Food Functionality and Applications. Int J Mol Sci. 24(17):13538. doi: 10.3390/ijms241713538. PMID: 37686341; PMCID: PMC10487995.

Google Scholar

Wang, G., Yang, Y., Yi, D., Yuan, L., Yin, P.H., Ke, X., Jun-Jie, W. and Tao, M.F. (2022). Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. J Liposome Res. 32(3):250-264. doi: 10.1080/08982104.2021.1999974. Epub 2021 Dec 13. PMID: 34895013.

Google Scholar

Wang, X., Hu, B., Hu, H., Zhou, S., Yin, M., Cheng, X., Zhang, Z. and Liu, H. (2023). Tannic Acid Suppresses HBV Replication via the Regulation of NF-κB, MAPKs, and Autophagy in HepG2.2.15 Cells. J Agric Food Chem.71(29):11069-11079. doi: 10.1021/acs.jafc.3c00863. Epub 2023 Jul 14. PMID: 37450882.

Google Scholar

Wang, Y., Shi, X., Li, L., Efferth, T. and Shang, D. (2021). The Impact of Artificial Intelligence on Traditional Chinese Medicine. Am J Chin Med. 49(6):1297-1314. doi: 10.1142/S0192415X21500622. Epub 2021 Jul 10. PMID: 34247564.

Google Scholar

Yulvianti, M. and Zidorn, C. (2021). Chemical Diversity of Plant Cyanogenic Glycosides: An Overview of Reported Natural Products. Molecules. 26(3):719. doi: 10.3390/molecules26030719. PMID: 33573160; PMCID: PMC7866531.

Google Scholar

Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 44(9): e13394. doi: 10.1111/jfbc.13394. Epub 2020 Jul 20. PMID: 32691460.

Google Scholar

Zhang, S., Liang, W., Abulizi, Y., Xu, T., Cao, R., Xun, C., Zhang, J. and Sheng, W. (2021). Quercetin Alleviates Intervertebral Disc Degeneration by Modulating p38 MAPK-Mediated Autophagy. Biomed Res Int. 2021:6631562. doi: 10.1155/2021/6631562. PMID: 34055990; PMCID: PMC8133869.

Google Scholar

Zheng, Z., Zhang, L. and Hou, X. (2022). Potential roles and molecular mechanisms of phytochemicals against cancer. Food Funct. 13(18):9208-9225. doi: 10.1039/d2fo01663j. PMID: 36047380.

Google Scholar