N. Sivaraj1*, S.R. Pandravada1, V. Kamala1, K. Anitha1, S. Backiyarani2, M.S. Saraswathi2, P. Durai2 and S. Uma1
1ICAR- National Bureau of Plant Genetic Resources, Regional Station,
Hyderabad 500 030, Telangana
2ICAR-National Research Centre for Banana, Tiruchirapalli 624 005, Tamil Nadu
Email: sivarajn@gmail.com
Received-04.01.2022, Revised-20.01.2022, Accepted-29.01.2022
Abstract: Predictive habitat distribution modelling framework for Manoranjitham (Karuvazhai), an important endemic fragrant banana cultivar of Eastern Ghats, South India has been analyzed using Maximum Entropy method. Presence points (geographical coordinates) were collected using a global positioning system during exploration survey visits for the collection of germplasm in Eastern Ghats, Tamil Nadu. MaxEnt software version 3.3.3k downloaded from www.cs.princeton.edu/~schapire/maxent was used for habitat modelling. The climate models generated for the present and future climates indicating that climate suitable regions for cultivation and on-farm conservation are available in parts of Andhra Pradesh (Prakasam, Chittoor), Tamil Nadu (Chengalpattu, North Arcot Ambedkar, Tiruvannamalai, South Arcot, Dharmapuri, Nilgiri, Periyar, Salem, Tiruchchirappalli, Thanjavur, Coimbatore, Dindigul, Madurai, Pasumpon, Pudukkottai) and Kerala (Kannur, Kozhikode, Malappuram, Palakkad, Thrissur, Ernakulam). Highest probability value of 0.75 to 1.00 has been obtained for the above-mentioned states in India for climate suitability. These districts of South India could be targeted for phased introduction of this elite banana cultivar, selection of cultivation sites based on climate suitability, identifying on-farm conservation areas, and for managing other related genetic resources activities in the climate change regime. Accordingly, contingent plan for sustainable cultivation and on-farm conservation of Manoranjitham landrace is to be developed.
Keywords: Banana, Conservation, Cultivation, Manoranjitham, DIVA-GIS, MaxEnt
References
Carnaval, A.C. and Moritz, C. (2008). Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography 35: 1187–1201.
Elith, J., Graham, C. H. and Anderson, R. P. et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151.
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E. and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57.
Hijmans, R. J. and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12:2272-2281.
Phillips, S. J., Dudik, M. and Schapire, R. E. (2004). A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Canada, 655-662.
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231-259.
Philips, S.J. and Dudik, M. (2008). Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecography 31 (2): 161-175.
Reddy, M. T., Begum, H., Sunil, N., Pandravada, S. R. and Sivaraj, N. (2015). Assessing Climate Suitability for Sustainable Vegetable Roselle (Hibiscus sabdariffa var.sabdariffa L.) Cultivation in India Using MaxEnt Model. Agricultural and Biological Sciences Journal 1(2): 62-7.
Reddy, M. T., Begum, H., Sunil, N., Pandravada, S. R. and Sivaraj, N. and Kumar, S. (2015). Mapping the Climate Suitability Using MaxEnt Modeling Approach for Ceylon Spinach (Basella alba L.) Cultivation in India. The Journal of Agricultural Sciences10(2): 87-97.
Roura- Pascual, N., Brotons, L.A.T., Peterson and W. Thuiller (2009). Consensual predictions of potential distributional areasfor invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological invasions DOI 10.1007/s10530-008-9313-3.
Singh, S. D. and Navi, S. S. (2000). Genetic resistance to pearl millet downy mildew II. Resistance in wild relatives. Journal of Mycology and Plant Pathology 30: 167-171.
Sivaraj, N., Elangovan, M., Kamala, V., Pandravada, S. R., Pranusha, P. and Chakrabarty, S. K. (2016). Maximum Entropy (Maxent) Approach to Sorghum Landraces Distribution Modelling. Indian Journal of Plant Genetic Resources 29(1): 16-21.
Sreejith, P. E., Linu, N.K., Sasikumar, P., Radhakrishnan, K. V. and. Sabu, M. (2016). Phytochemical studies of an endemic and critically endangered hill banana, Musa acuminata Colla (AA) ‘Karivazhai’ fruit by GC-MS. Journal of Chemical and Pharmaceutical Research 8(5):164-168.
Suresh, K. (2010). Ethno-medico botanical survey among Malayali tribes isn the Southern Eastern Ghats, Tamil Nadu. Ph.D. Thesis. Gandhigram Rural Institute-Deemed University, Gandhigram.
Tittensor, D. P., Baco, A. R., Brewin, P. E., Clark, M. R., Consalvey M., Hall-Spencer, J. Rowden, A.A., Schlacher, T.K. Stocks, I. and Rogers, A.D. (2009). Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography 36: 1111-1128.
Verbruggen, H., Tyberghein, L., Pauly, K., Vlaeminck, C., VanNieuwenhuyze, K., Kooistra, W., Leliaert, F. and De Clerck, O. (2009). Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecololgy Biogeography 18: 393-405.
Williams, J. N., Seo, C.W., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J. M. and Schwartz, M.W. (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions 15: 565-576.
Williams, K. A., Richards, C.S. and Villet, M.H. (2014). Predicting the geographic distribution of Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae) in South Africa. African Invertebrates 55(1):157-170.
Wollan, A. K., Bakkestuen, V., Kauserud., H., Gulden, G. and Halvorsen, R. (2008). Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography 35: 2298–2310.