2025, Issue 6, Volume 17

DEVELOPMENT OF FRIABLE EMBRYOGENIC CALLI FROM GINGER SHOOTS OF VARYING MATURITY

View: Full Length Article

D.P. Syamaladevi*, S.K. Nehamol, Sujina A., Sheeja T.E. and Mekha, B.

ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India, PIN-673 012

Email: mathdpsdevi@gmail.com

Received-02.06.2025, Revised-14.06.2025, Accepted-27.06.2025

Abstract: Ginger is a vegetative propagated monocot with medicinal properties and is cultivated mainly in the tropics as a spice crop. The lack of seed setting limits genetic improvement in this crop to clonal selection and mutation breeding. Therefore, assistance from modern technologies, like genetic transformation and genome editing, can be used to broaden the genetic base and improve traits like yield, quality, and climate resilience in ginger. Callus induction is a crucial step in Agrobacterium-mediated genetic transformation, genome editing, production of somaclonal variants, in vitro production of phytochemicals, etc. Production of friable embryogenic calli requires fine-tuning the hormonal composition in the callus induction media in a genotype- and explant-specific manner. In this study, we have optimised the callus induction protocol for the variety IISR Varada using five different explant tissues, like leaf lamina, immature shoot tip, immature shoot base, mature shoot tip, and mature shoot base. We found that the shoot bases from the mature and immature shoots of IISR Varada were capable of responding to the exogenous application of 2,4-D and developed calli with an induction rate of 75%. The mature shoot tip also responded to a combination of 2,4-D and BAP.

Keywords: Genetic engineering, Genome editing, Tissue culture, Ginger, Zingiber officinale

REFERENCES

Abd El-Hameid, A. R., Abo El-kheir, Z. A., Abdel-Hady, M. S. and Helmy, W. A. (2020). Identification of DNA variation in callus derived from Zingiber officinale and anticoagulation activities of ginger rhizome and callus. Bulletin of the National Research Centre, 44: 1-8.

Google Scholar

Anasori, P. and Asghari, G. (2009). Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Research in Pharmaceutical Sciences, 3(1): 59-63.

Google Scholar

Andersen, A. N., Fisher, A., Hoffmann, B. D., Read J. L. and Richards, R. (2004). Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecology, 29 (1): 87-92.

Google Scholar

Babu, K. N., Samsudeen, K. and Ratnambal, M. J. (1992). In vitro plant regeneration from leaf-derived callus in ginger (Zingiber officinale Rosc.). Plant cell, tissue and organ culture, 29: 71-74.

Google Scholar

Babu, K. N., Samsudeen, K., Ratnambal, M. J. and Ravindran, P. N. (1996). Embryogenesis and plant regeneration from ovary derived callus cultures of ginger (Zingiber officinale Rosc.). Journal of Spices and Aromatic Crops, 5(2): 134-138.

Google Scholar

Du, D., Jin, R., Guo, J. and Zhang, F. (2019). Infection of embryonic callus with Agrobacterium enables high-speed transformation of maize. International Journal of Molecular Sciences, 20(2): 279.

Google Scholar

El-Mageid, I. S. (2019). Evaluation of genetic stability by using protein and ISSR markers during callus development stage of some date palm (Phoenix dactylifera L.) cultivars under effect of 2, 4-D and Picloram. Middle East J. Appl. Sci., 9: 483-493.

Google Scholar

Folling, L. and Olesen, A. (2002). Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Reports, 20: 1098-1105.

Google Scholar

Gnasekaran, P., Rahman, Z. A., Chew, B. L., Uddain, J., Solayappan, M., Chear, N. J. Y. and Subramaniam, S. (2023). Picloram enhanced the callus induction, growth kinetics, antioxidant potentials, and secondary metabolites production of Zingiber officinale var. rubrum callus cultures. Plant Cell, Tissue and Organ Culture (PCTOC),155(3): 843-859.

Google Scholar

Gurav, S. S., Gurav, N. S., Patil, A. T. and Duragkar, N. J. (2020). Effect of explant source, culture media, and growth regulators on callogenesis and expression of secondary metabolites of Curcuma longa. Journal of Herbs, Spices & Medicinal Plants, 26(2): 172-190.

Google Scholar

Habibah, N. A., Widiatningrum, T., Anggraito, Y. U., Rahayu, E. S., Mukhtar, K., Wijayanti, N. and Mustafa, F. (2019). Growth of Elaeocarpus grandiflorus callus cultures in MS medium with various concentrations of growth regulators. In Journal of Physics: Conference Series (Vol. 1321, No. 3, p. 032037). IOP Publishing.

Google Scholar

Ibrahim, D. A., Danial, G. H., Mosa, V. M. and Khalil, B. M. (2015). Plant regeneration from shoot tips-derived callus of ginger (Zingiber officinale Rosc.). American Journal of Experimental Agriculture, 7(1): 55-61.

Google Scholar

Khatun, M. M., Ali, M. H. and Desamero, N. V. (2003). Effect of genotype and culture media on callus formation and plant regeneration from mature seed scutella culture in rice. Plant Tissue Cult., 13(2): 99-107.

Google Scholar

Liu, G., Gilding, E. K. and Godwin, I. D. (2015). A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. South African Journal of Botany, 98: 157-160.

Google Scholar

Mehaboob, V. M., Faizal, K., Shamsudheen, K. M., Raja, P., Thiagu, G. and Shajahan, A. (2019). Direct organogenesis and microrhizome production in ginger (Zingiber officinale Rosc.). J. Pharmacogn. Phytochem.,8: 2880-2883.

Google Scholar

Roy, M., Hossain, M., Biswas, A., Biswas, M. K. and Islam, R. (2011). Plant Regeneration through Somatic Embryogenesis from Leaf Sheath Derived Callus of Sugarcane (Saccharum officinarum L.) var. Isd-16. Plant Tissue Culture and Biotechnology, 21(2): 143-149.

Google Scholar

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3).

Google Scholar

Oliveira, L. D., Oliveira, A. D., Machado, C. D. A., Cardoso, M. N., Santana, F. V., Miranda, I. C. D. and Ledo, A. D. S. (2018). Induction, growth kinetics and morpho-histological characterization of Neem callus. Journal of Agricultural Science (Toronto), 10(6): 283-290.

Google Scholar

Prasath, D., Karthika, R., Habeeba, N. T., Suraby, E. J., Rosana, O. B., Shaji, A. and Anandaraj, M. (2014). Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection. PLoS One, 9(6): e99731.

Google Scholar

Praveen, R. P. and Nair, A. S. (2014). Callus induction and multiplication of internodal explants of Myxopyrum smilacifolium Blume. Int.J.Curr.Microbiol.App.Sci., 3(10): 612-617.

Google Scholar

Sahoo, K. K., Tripathi, A. K., Pareek, A., Sopory, S. K. and Singla-Pareek, S. L. (2011). An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 7: 1-11.

Google Scholar

Salma, U., Kundu, S., Ali, M. N. and Mandal, N. (2019). Somatic embryogenesis-mediated plant regeneration of Eclipta alba (L.) Hassk. and its conservation through synthetic seed technology. Acta Physiologiae Plantarum, 41: 1-10.

Google Scholar

Samsudeen, K., Babu, K. N., Divakaran, M. and Ravindran, P. N. (2000). Plant regeneration from anther derived callus cultures of ginger (Zingiber officinale Rosc.). The Journal of Horticultural Science and Biotechnology, 75(4): 447-450.

Google Scholar

Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In Symp. Soc. Exp. Biol., 11: 118–130.

Google Scholar

Solanky, R.U., Patel, S.R. and Patel, J.R. (2013). In vitro regeneration of ginger (zingiber officinale rosc.) through callus culture. AGRES-an International e-Journal, 2(2):196-202.

Google Scholar

Song, Y., Bai, X., Dong, S., Yang, Y., Dong, H., Wang, N. and Li, S. (2020). Stable and efficient agrobacterium-mediated genetic transformation of larch using embryogenic callus. Frontiers in Plant Science, 11: 584492.

Google Scholar

Soundar Raju, C., Kathiravan, K., Aslam, A. and Shajahan, A. (2013). An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.). Plant Cell, Tissue and Organ Culture (PCTOC), 112: 387-393.

Google Scholar

Sultana, A. Z. R. A., Hassan, L., Ahmad, S. D., Shah, A. H., Batool, F., Islam, M. A. and Moonmoon, S. (2009). In vitro regeneration of ginger using leaf, shoot tip and root explants. Pak. J. Bot., 41(4): 1667-1676.

Google Scholar

Suwanaketchanatit, C., Piluek, J., Peyachoknagul, S. and Huehne, P.S. (2007). High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment. Biol. Plant, 51:720–727.

Google Scholar

Turhan, H. and Baser, I. (2004). Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian Journal of Plant Sciences, 3: 17-19.

Google Scholar

Widyastuti, D. A., Santosa, D., Nuringtyas, T. R. and Rohman, A. (2024). Callus induction of red ginger (Zingiber officinale var. rubrum) with 2, 4-D and Kinetin combination to enhance total phenolic and flavonoid content. In IOP Conference Series: Earth and Environmental Science (Vol. 1364, No. 1, p. 012051).

Google Scholar