2023, Issue 11, Volume 15

CYTOTOXIC AND GENOTOXIC POTENTIAL OF SOME COMMONLY USED FOOD COLOURS

Shalini Saxena* and Bhamar Pal

Lab of Cytogenetics, Department of Botany, Bareilly College Bareilly, U.P, India

Email: 2126shalini@gmail.com

Received-31.10.2023, Revised-15.11.2023, Accepted-28.11.2023

Abstract: A literature review using the Scopus database to collect papers on the cytotoxic potential of Synthetic food colours/Hazardous effects of Synthetic food dyes was done to confirm the relevance and significance of research on food dyes (food colourants). Through the literature search, 65 publications from 2002 to 2022 were located, reviewed, and further discussed. One of the primary findings is that natural dyes are increasingly replacing synthetic colourants in meals. This suggests that natural dyes significantly impact processed foods as they gradually replace those made via synthesis. Studies on exposure to synthetic food dyes and surveillance are being conducted. Innovative food technology and fresh extraction and stabilization methods are a severe problem. Using bio-residues as a source of food dyes is another novel area.

Keywords: Synthetic food dyes, Cytotoxicity, Genotoxicity, Natural food colours

REFERENCES

Abdelmigid, H. M. (2019). Risk assessment of food coloring agents on DNA damage using RAPD markers.Open Biotechnology Journal.3: 96 – 102.

Google Scholar

Abernethy, D. R., DeStefano, A. J., Cecil, T. L., Zaidi, K., Williams, R. L. and Panel, U.M. I. A. (2020).Metal impurities in food and drugs.Pharmaceutical Research.27: 750 – 755.

Google Scholar

Abramsson-Zetterberg, L. and Ilback, N. G. (2021). The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food and Chemical Toxicology.59: 86 – 89.

Google Scholar

Almela, C., Algora, S., Benito, V., Clemente, M. J., Devesa, V., Suner, M. A., D. Vélez, D. and Montoro, R. (2022). Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. Journal of Agricultural and Food Chemistry.50: 918-923.

Google Scholar

AL-Shinnawy, M. S. (2019). Physiological effect of a food additive on some hematological and biochemical parameters of male albino rats.Egyptian Academic Journal of Biological Sciences.2: 143 – 151.

Google Scholar

Alves, S. P., Brum, D. M., de Andrade, É. C. B. and Netto, A. D. P. (2018).Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection.Food Chemistry.107: 489 – 496.

Google Scholar

Ames, B. N., McCann, J. and Yamasaki, E. (2020). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. MutationResearch/Environmental Mutagenesis and Related Subjects.31: 347 – 363.

Google Scholar

Amin, K. A., Hameid, H. A. and Elsttar, A. A. (2020). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology.48: 2994 – 2999.

Google Scholar

Anand, S. P. and Sati, N. (2013). Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. International Journal of Pharmaceutical Sciences and Research.4: 2496 – 2501.

Google Scholar

Ashour, A.A. and Abdela, A. (2022).Role of fast green on the blood of rats and the therapeutic action of vitamins C or E. International Journal of Integrative Biology.6: 1 – 6.

Google Scholar

Babu, S. and Shenolikar, I. (2020).Health and nutritional implications of food colours.Indian Journal of Medicine Research.102: 245 – 249.

Google Scholar

Badr, A. (2022). Mitodepressive and chromotoxic activities of two herbicides in Allium cepa.Cytologia.48: 451 – 457.

Google Scholar

Ballantyne, B. (2018). Pulmonary alveolar phospholipoproteinosis induced by Orasol Navy Blue dust. Human and Experimental Toxicology.13: 694 – 699.

Google Scholar

Bhatia, M. S. (2020). Allergy to tartrazine in psychotropic drugs.The Journal of Clinical Psychiatry.61: 473 – 476.

Google Scholar

Bhattacharjee, M. (2019).Evaluation of mitodepressive effect of sunset Yellow using Allium sativum assay.International Journal of Science, Environment and Technology3: 1120-1130.

Google Scholar

Biswas, G., Sarkar, S. and Chatterjee, T. K. (2020). Surveillance on artificial colors in food-products marketed in Calcutta and adjoining areas. Journal of Food Science and Technology.31: 66 – 67.

Google Scholar

Bitton, G. and Koopman, B. (2017).Bacterial and enzymatic bioassays for toxicity testing in the environment. In: Reviews of Environmental Contamination and Toxicology. Springer, New York. pp. 1-22.

Google Scholar

Botek, P., PouStka, J. and Hajslova, J. (2017).Determination of banned dyes in spices by liquid chromatography-mass spectrometry.Czech Journal of Food Science25:17-24.

Google Scholar

Cerniglia, C. E., Zhuo, Z., Manning, B. W., Federle, T. W. and Heflich, R. H. (2020). Mutagenic activation of the benzidine-based dye Direct Black 38 by human intestinal microflora. Mutation Research.175: 11 – 16. 

Google Scholar

Ceyhan, B. M., Gultekin, F., Doguc, D. K. and Kulac, E. (2022). Effects of maternally exposed coloring food additives on receptor expressions related to learning and memory in rats. Food and Chemical Toxicology.56: 145 – 148.

Google Scholar

Chakravarti, R.N. (2018). A simple test for butter yellow, a carcinogenic oil soluble dye in edible and cosmetic materials.Journal of the Institution of Chemists.60: 206.

Google Scholar

Chakravarty, G., Goyal, R. P., Sharma, S. and Sharma, A. (2015). Haematological changes induced by a common non-permitted food colour, malachite green (MG) in Swiss albino mice. Indian Journal of Environmental Sciences.9: 113 – 117.

Google Scholar

Chakravarty, G., Goyal, R. P., Sharma, S. and Sharma, A. (2016). Haematological and serological toxicity of Orange G in Swiss albino mice, mus musculus.Nature, Environment and Pollution Technology.5: 95 – 99.

Google Scholar

Chanlon, S., Joly-Pottuz, L., Chatelut, M., Vittori, O. and Cretier, J. L. (2015).Determination of Carmoisine, Allura red and Ponceau 4R in sweets and soft drinks by Differential Pulse Polarography.Journal of Food Composition and Analysis.18: 503 – 515.

Google Scholar

Chauhan, L. K., Saxena, P. N. and Gupta, S. K. (2021). Evaluation of cytogenetic effects of isoproturon on the root meristem cells of Allium sativum. Biomedical and environmental sciences.14: 214 – 219.

Google Scholar

Cheeseman, M. A. (2022). Artificial food color additives and child behavior.Environmental Health Perspectives.120: 15 – 16 a.

Google Scholar

Chen, F., Ding, M., Castranova, V. and Shi, X. (2021). Carcinogenic metals and NF-κB activation. In: Molecular Mechanisms of Metal Toxicity and Carcinogenesis. Springer, US. pp. 159 – 171

Google Scholar

Chen, H. (2016). Recent advances in azo dye degrading enzyme research. Current Protein and Peptide Science.7: 101 – 111.

Google Scholar

Chequer, F. M. D., Angeli, J. P. F., Ferraz, E. R. A., Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S. and de Oliveira, D. P. (2019). The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.676: 83 – 86.

Google Scholar

Chequer, F. M. D., de Paula Venâncio, V., Bianchi, M. D. L. P. and Antunes, L. M. G. (2012).Genotoxic and mutagenic effects of erythrosine B, a xanthene food dye, on HepG2 cells.Food and Chemical Toxicology.50: 3447 – 3451.

Google Scholar

Chequer, F. M. D., Lizier, T. M., de Felicio, R., Zanoni, M. V. B., Debonsi, H. M., Lopes, N. P., Marcosd, R. and de Oliveira, D. P. (2019). Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicology in Vitro.25: 2054 – 2063.

Google Scholar

Cheung, W., Shadi, I. T., Xu, Y. and Goodacre, R. (2020).Quantitative Analysis of theBanned Food Dye Sudan-1 Using Surface Enhanced Raman Scattering with Multivariate Chemometrics.The Journal of Physical Chemistry.114: 7285 – 7290.

Google Scholar

Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F. and Chou, S. T. (2022). Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry.50: 2454 – 2458.

Google Scholar

Collins, T. F. X., Black, T. N., O’Donnell, M. W., Shackelford, M. E. and Bulhack, P. (1993).Teratogenic potential of FD & C Red No. 3 when given in drinking water.Food and Chemical Toxicology.31: 161 – 167.

Google Scholar

Combeau, S., Chatelut, M. and Vittori, O. (2012). Identification and simultaneous determination of Azorubine, Allura red and Ponceau 4R by differential pulse polarography: Application to soft drinks. Talanta.56: 115 – 122.

Google Scholar

Combes, R. D. and Haveland-Smith, R. B. (2012). A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutation Research/Reviews in Genetic Toxicology.98: 101 – 243.

Google Scholar

Culzoni, M. J., Schenone, A. V., Llamas, N. E., Garrido, M., Di Nezio, M. S., Band, B. S. F. and Goicoechea, H. C. (2019). Fast chromatographic method for the determination of dyes in beverages by using high performance liquid chromatography—Diode array detection data and second order algorithms. Journal of Chromatography A.1216: 7063 – 7070.

Google Scholar

Das, A. and Mukherjee, A. (2014). Genotoxicity testing of the food colours amaranth and tartrazine. International Journal of Human Genetics.4: 277 – 280.

Google Scholar

De Andrade, F. I., Guedes, M. I. F., Vieira, Í. G. P., Mendes, F. N. P., Rodrigues, P. A. S., Maia, C. S. C., Ávila, M.M.M. and de Matos Ribeiro, L. (2022). Determination of synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC. Food Chemistry157: 193-198.

Google Scholar

De Campos Ventura-Camargo, B. and Marin-Morales, M. A. (2013). Azo Dyes: Characterization and Toxicity– A Review. Textiles and Light Industrial Science and Technology. 2: 85 – 103. 

Google Scholar

De Oliveira, M. V. A., Alves, D. D. L., de Morais Lima, L. H. G., de Castro, J. M. and Peron, A. P. (2013). Cytotoxicity of erythrosine (E-127), brilliant blue (E-133) and red 40 (E-129) food dyes in a plant test system. Acta Scientiarum Biological Sciences.35: 557 – 562.

Google Scholar

Di Donna, L., Maiuolo, L., Mazzotti, F., De Luca, D. and Sindona, G. (2014). Assay of Sudan Icontamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Analytical Chemistry.76: 5104 – 5108.

Google Scholar

Dias, V. M. C. and Cardoso, A. S. B. (2016).The determination of lead in sugar and sweets without digestion by electrothermal atomic absorption spectrometry (ETAAS) with a rhodium chemical modifier.Food Additives and Contaminants.23: 479 – 483.

Google Scholar

Diez-González, S., Escudero-Adán, E. C., Benet-Buchholz, J., Stevens, E. D., Slawin, A. M. and Nolan, S. P. (2020). [(NHC) CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click Chemistry. On the advantage of using well-defined catalytic systems.Dalton Transactions.39: 7595 – 7606.

Google Scholar

Dinç, E., Aktaş, A. H. and Ustündağ, O. (2015).New liquid chromatographicchemometric approach for the determination of sunset yellow and tartrazine in commercial preparation.Journal of AOAC International.88: 1748 – 1755.

Google Scholar

Dixit, A. and Goyal, R. P. (2013). Evaluation of Reproductive toxicity caused by Indigo carmine on male Swiss albino mice.Pharmacology Online.1: 218 – 224.

Google Scholar

Dos Santos, D. M., Goiato, M. C., Sinhoreti, M. A. C., Fernandes, A. Ú. R., do Prado Ribeiro, P. and de Carvalho Dekon, S. F. (2010). Color stability of polymers for facial prosthesis.Journal of Craniofacial Surgery.21: 54 – 58.

Google Scholar

Ertaş, E., Özer, H. and Alasalvar, C. (2017). A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper. Food Chemistry.105: 756 – 760.

Google Scholar

Fatima, R. A. and Ahmad, M. (2015).Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater.Science of the Total Environment.346: 256 – 273.

Google Scholar

Fatima, R. A. and Ahmad, M. (2016).Allium cepa derived EROD as a potential biomarker for the presence of certain pesticides in water. Chemosphere.62: 527 – 537.

Google Scholar

Fatima, R. A. and Ahmad, M. (2016). Genotoxicity of industrial wastewaters obtained from two different pollution sources in northern India: a comparison of three bioassays. Mutation       Research/GeneticToxicologyand Environmental Mutagenesis.609: 81 – 91.

Google Scholar

Feng, F., Zhao, Y., Yong, W., Sun, L., Jiang, G. and Chu, X. (2011).Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography– electrospray tandem mass spectrometry.Journal of Chromatography B.879: 1813 – 1818.

Google Scholar

Ferraz, E. R., Grando, M. D. and Oliveira, D. P. (2021). The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. Journal of hazardous materials.192: 628-33.

Google Scholar

Flora, S. J. S., Mittal, M. and Mehta, A. (2018). Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal of Medical Research.128: 501 – 523.

Google Scholar

Fuh, M. R. and Chia, K. J. (2012).Determination of sulphonated azo dyes in food by ionpair liquid chromatography with photodiode array and electrospray mass spectrometry detection.Talanta.56: 663 – 671.

Google Scholar

Ganesan, L., Margolles-Clark, E., Song, Y. and Buchwald, P. (2011). The food colorant erythrosine is a promiscuous protein–protein interaction inhibitor. Biochemical Pharmacology.81: 810 – 818.

Google Scholar

Gautam, D., Sharma, G. and Goyal, R. P. (2010). Evaluation of toxic impact of tartrazine on male Swiss albino mice.Pharmacology Online1: 133 – 40.

Google Scholar

Ghoreishi, S. M., Behpour, M. and Golestaneh, M. (2012). Simultaneous determination of sunset yellow and tartrazine in soft drinks using gold nano particles carbon paste electrode. Food Chemistry.132: 637 – 641.

Google Scholar

Gomes, K. M. S., Oliveira, M. V. G. A. D., Carvalho, F. R. D. S., Menezes, C. C. and Peron, A. P. (2013). Cytotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology.33: 218 – 223.

Google Scholar

Hassan, G. M. (2010). Effects of some synthetic coloring additives on DNA damage and chromosomal aberrations of rats.Arab Journal of Biotechnology.13: 13 – 24.

Google Scholar

Himri, I., Bella0hcen, S., Souna, F., Belmekki, F., Aziz, M., Bnouham, M., Zoheir, J., Berkia, Z., Mekhfi, H. and Saalaoui, E. (2011). A 90-day oral toxicity study of tartrazine, a synthetic food dye, in Wistar rats.International Journal of Pharmacy and Pharmaceutical Sciences.3: 159 – 169.

Google Scholar

Huang, H. Y., Shih, Y. C. and Chen, Y. C. (2012).Determining eight colorants in milk beverages by capillary electrophoresis.Journal of chromatography A. 959: 317 – 325.

Google Scholar

Jadhav, S.T., Kulkarni, C.G., Shinkar, M.C. and Lokhande, K.D. (2013). Possible carcinogenic potential of various marketed dyes. International Journal of Pharmaceutical, Chemical and Biological Sciences.3: 265 – 268.

Google Scholar