2016, Issue 8, Volume 8

COPPER AND CADMIUM SULPHIDE NANOPARTICLES CAN INDUCE MACROMUTATION IN NIGELLA SATIVA L. (BLACK CUMIN)

Divya Vishambhar Kumbhakar1, Animesh Kumar Datta1*, Debadrito Das1, Bapi Ghosh1, Ankita Pramanik1 and Aditi Saha2

1Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, University of Kalyani, Kalyani – 741235, West Bengal, India

2Department of Botany, NarasinhaDutt College, Howrah 711101

Email: dattaanimesh@gmail.com

Received-12.08.2016, Revised-26.08.2016

Abstract: Dry seeds(moisture content: 5.0%) of Nigella sativa L. (Family: Ranunculaceae; common name- black cumin, spice of commerce with immense therapeutic uses) are exposed to chemically synthesized copper (Cu) and cadmium sulphide (CdS) nanoparticles (NPs) at the doses of 0.25, 0.50 and 1.00 µg/ml for 3 and 6 h durations. EMS (ethyl methanesulphonate ̶ 0.25, 0.50 and 1.00%, 3 and 6 h durations) and gamma irradiations (25, 50, 100, 200 and 300 Gy; 60Co source) are used as positive control. The objective of the work is to foresee whether NPs can induce stable phenotypic mutation. The present communication highlights macromutation types and frequency, mutagenic efficiency and effectiveness and meiotic chromosome behaviour in treated materials and suggests the efficacy if NPs in inducing mutation in N.sativa and crop improvement.

Keywords: Cu- and CdS-NPs, Macromutants, Meiotic analysis, Mutagenic efficiency and effectiveness, Nigella sativa

REFERENCES

Blixt, S. (1961).Quantitative studies of induced mutations in peas. V. Chlorophyll mutations.Agric. Hort. Genet.Landskrona.19:171-183.

Caruthers, S.D., Wickline, S.A. and Lanza, G.M. (2007).Nanotechnological applications in medicine.Curr.Opin. Biotechnol.18 (1): 26–30.

Castiglione, M.R., Giorgetti, L., Geri, C. and Cremonini, R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicianarbonensis L. and Zea mays L. J. Nanopart. Res. 13: 2443–2449.

Chatterjee, A.K., Sarkar, R., Chattopadhyay, A.P., Aich, P., Chakraborty, R. and Basu, T.A. (2012).Simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli.Nanotech.23 (085103): 1 ̶ 11.

Datta, A.K., Saha, A., Bhattacharya, A., Mandal, A., Paul, R. and Sengupta, S. (2012). Black cumin (Nigellasativa L.) – a review.J. Plant Dev. Sci.4 (1): 1–43.

Dubey, P.K. and Datta, A.K. (2014).Induced mutagenesis in Abelmoschusmoschatus (L.)Medik.Int. Res. J. Pharm., 3 (5): 432–435.

Gaul, H. (1964). Mutation in plant breeding.Rad. Bot. 4: 155 ̶ 252.

Halder, S., Mandal, A., Das, D., Gupta, S., Chattopadhyay, A.P. and Datta, A.K. (2015a). Copper nanoparticle induced macromutation in Macrotylomauniflorum (Lam.) Verdc. (Family: Leguminosae): a pioneer report. Genet.Resour. Crop Evol.62 (2): 165 ̶ 175.

Halder, S., Mandal, A., Das, D., Datta, A.K., Chattopadhyay, A.P., Gupta, S. and Kumbhakar, D.V. (2015b). Effective potentiality of synthesisedCdS nanoparticles in inducing genetic variation on Macrotylomauniflorum (Lam.) Verdc.BioNanoSci.5 (3): 171 ̶ 180.

Konzak, C.F., Nilan, R.A., Wagner, J.  and Foster R.J. (1965). Efficient chemical mutagenesis.Rad. Bot. (Suppl.). 5: 49–70.

Kumbhakar, D.V., Datta, A.K., Mandal, A., Das, D., Gupta, S., Ghosh, B., Halder, S. and Dey, S. (2016). Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin) – can nanoparticles act as mutagenic agents? J. Exp. Nano. Sci. 1 ̶ 17.doi: 10.1080/17458080.2016.1149236.

Lam, C.W., James, J.T., McCluskey, R. and Hunter, R.L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation.Toxicol. Sci.77 (1): 126 ̶ 134.

Marks, G.E. (1954). An aceto-carmine glycerol jelly for use in pollen-fertility counts. Stain Technol., 29: 277.

Masarovičová, E. and Kráľová, K. (2013).Metal nanoparticles and plants.Ecol. Chem. Eng. S. 20 (1): 9 ̶ 22.

Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Sakthi D. K. (2010). Nanoparticulate material delivery to plants. Plant Sci.179 (3): 154–163.

Nowack, B. andBucheli, T.D. (2007).Occurrence, behavior and effects of nanoparticles in the environment.Environ. Pollut.150 (1): 5 ̶ 22.

Remédios, C., Rosario, F. and Bastos, V. (2012). Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J. Bot.Article ID 751686,1 ̶ 8.

Roco, M.C. (2003). Broader societal issues of nanotechnology.J. Nanopart. Res., 5 (34): 181 ̶ 189.

Scrinis, G. and Lyons, K. (2007). The emerging nano-corporate paradigm: nanotechnology and the transformation of nature,food and agri-food systems. Int. J. Sociol. Agric. Food. 15 (2): 22 ̶ 44.

Singh, M., Singh, S., Prasada, S. and Gambhir, I.S. (2008).Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J. Nanomater. Biostruct.3 (3): 115 ̶ 122.

Walther, F. (1969).Effectiveness of mutagen treatments in ionizing radiation in barley.Induced mutation in plants.Proc. symp.On the nature, induction and utilization of mutations in plants.IAEA-FAO.Pullman wash; 261 ̶ 270.