Shricharan S.1* Dharani E.2 and Balaji B.3
1,2 Division of Plant Physiology, Indian Agricultural Research Institute – National Institute of Abiotic Stress Management, Baramati, Maharashtra, India – 413115.
3 Division of Molecular Biology & Biotechnology, Indian Agricultural Research Institute,
Pusa, New Delhi, India – 110012.
Email: shricharanag@gmail.com
Received-03.02.2022, Revised-19.02.2022, Accepted-26.02.2022
Abstract: Sorghum bicolor is one of the diverse and staple food crops grown on earth. About 41.97 million hectares on the earth has been cultivated sorghum in the year of 2021-2022. Drought is prevailing problem and important factor all over the world on agriculture production. Along with that, climate change making a serious situation for the cultivation of crops. Sorghum is one of the excellent crops capable of adapting to drastic environmental changes. By understanding the mechanism behind the adaptation and tolerance to the drought, we can make better crop. This review covers the possible approaches in the drought tolerance of the Sorghum such as the morphological character determining the drought stress tolerances, microbial interactions forming symbionts and helping in stress tolerance, breeding and molecular approaches to improve the abiotic stress tolerance and the use of QTLs and Marker Assisted Selection for improving the drought tolerance.
Keywords: Drought stress, tolerance, drought genes, breeding, QTLs
References
Abou-Elwafa, S.F. and Shehzad, T. (2018). Genetic identification and expression profiling of drought responsive genes in sorghum. Environ. Exp. Bot. 155, 12 – 20.
Assefa, Amelework Beyene (2012). Genetic diversity analysis of lowland sorghum [Sorghum bicolor (L.) Moench] landraces under moisture stress conditions and breeding for drought tolerance in North Eastern Ethiopia (Doctoral dissertation, University of KwaZulu-Nata).
Google Scholar
Assefa, Y., Staggenborg, S. A. and Prasad, V. P. V. (2010). Grain sorghum water requirement and responses to drought stress: A review. Online. Crop Management doi:10.1094/CM-2010-1109-01-RV.
Bandaru, V., Stewart, B. A., Baumhardt, R. L., Ambati, S., Robinson, C. A. and Schlegel, A. (2006). Growing dryland grain sorghum in clumps to reduce vegetative growth and increase yield. Agronomy Journal, 98(4), 1109-1120.
Basu, S., Ramegowda, V., Kumar, A. and Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, F1000 Faculty Rev-1554.
Bao, S.G., Shi, J.X., Luo, F., Ding, B., Hao, J., Xie, X.D. and Sun, S. (2017). Overexpression of Sorghum WINL1 gene confers drought tolerance in Arabidopsis thaliana through the regulation of cuticular biosynthesis. Plant Cell Tiss Organ Cult 128, 347–356.
Belete, T. (2018). Breeding for resistance to drought: A case in sorghum (Sorghum bicolor (L.)Moench). J Agric Forest Meteorol Res, 1(1), 1-10.
Bibi, A., Sadaqat, H. A., Tahir, M. H. N. and Akram, H. M. (2012). Screening of sorghum (Sorghum bicolor var Moench) for drought tolerance at seedling stage in polyethylene glycol. J. Anim. Plant Sci, 22(3), 671-678.
Caddel, J. L. and Weibel, D. E. (1972). Photoperiodism in Sorghum 1. Agronomy Journal, 64(4), 473-476.
Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M. and Heard, J. E. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant physiology, 147(2), 446-455.
Dahlberg, J., Berenji, J., Sikora, V. and Latkovic, D. (2012). Assessing sorghum [Sorghum bicolor (L)Moench] germplasm for new traits: food, fuels & unique uses. Maydica, 56(2).
Disasa, T., Feyissa, T., Admassu, B., Paliwal, R., Villiers, S.D. and Odeny, D.A. (2016). Molecular evaluation of Ethiopian sweet sorghum germplasm and their contribution to regional breeding programs. Aust. J. Crop Sci, 10, 520 – 527.
Edema, R. and Amoding, G.K. (2015). Validating Simple Sequence Repeats (SSR) markers for introgression of stay-green Quantitative Trait Loci (QTL) into elite sorghum lines. Afr. J. Biotechnol. 14(46), 3101 – 3111.
Hancock, J.D. (2000). “Value of sorghum and sorghum co-products in diets for livestock”, in: Smith, C.W. and R.A. Frederiksen (eds.), Sorghum: Origin, History, Technology, and Production, John Wiley & Sons, New York, 731-749.
Howarth, C. J., Rattunde, E. W., Bidinger, F. R. and Harris, D. (1996). Seedling survival of abiotic stress: Sorghum and pearl millet.
Kapoor, R., Evelin, H., Mathur, P. and Giri, B. (2013). Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In Plant acclimation to environmental stress (pp. 359-401). Springer, New York, NY.
Kishor, P. K., Hong, Z., Miao, G. H., Hu, C. A. A. and Verma, D. P. S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant physiology, 108(4), 1387-1394.
Li, H., Han, X., Liu, X., Zhou, M., Ren, W., Zhao, B., Ju, C., Liu, Y. and Zhao, J. (2019). A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC genomics, 20(1), 737.
Lu, M., Zhang, DF., Shi, YS. et al. Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tiss Organ Cult 115, 443–455 (2013).
Maheswari, M., Varalaxmi, Y., Vijayalakshmi, A., Yadav, S. K., Sharmila, P., Venkateswarlu, B. and Saradhi, P. P. (2010). Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum, 54(4), 647-652.
Maqbool, S. B., Devi, P. and Sticklen, M. B. (2001). Biotechnology: Genetic improvement of sorghum (Sorghum bicolor (L.)Moench). In Vitro Cellular & Developmental Biology-Plant, 37(5), 504-515.
Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H. and Daffonchio, D. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models?.Plant signaling & behavior, 8(10), e26741.
Mayak, S., Tirosh, T. and Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant physiology and Biochemistry, 42(6), 565-572.
McCormick, R. F., Truong, S. K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., Kennedy, M., Amirebrahimi, M., Weers, B. D., McKinley, B., Mattison, A., Morishige, D. T., Grimwood, J., Schmutz, J. and Mullet, J. E. (2018). The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. The Plant journal : for cell and molecular biology, 93(2), 338–354.
Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A. and Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in plant science, 8, 172.
Mittal, S., Mallikarjuna, M. G., Rao, A. R., Jain, P. A., Dash, P. K. and Thirunavukkarasu, N. (2017). Comparative analysis of CDPK family in maize, Arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement. Frontiers in Chemistry, 5, 115.
Ngara, R., Goche, T., Swanevelder, D. Z. and Chivasa, S. (2021). Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life, 11(7), 704.
Osmolovskaya N., Shumilina J., Kim A., Didio A., Grishina T., Bilova T., Keltsieva O.A., Zhukov V., Tikhonovich I., Tarakhovskaya E., et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. Int. J. Mol. Sci. 2018;19:4089.
Queiroz, M. S., Oliveira, C. E., Steiner, F., Zuffo, A. M., Zoz, T., Vendruscolo, E. P. and Menis, F. T. (2019). Drought stresses on seed germination and early growth of maize and sorghum. Journal of Agricultural Science, 11(2), 310-318.
Reddy, P. S., Jogeswar, G., Rasineni, G. K., Maheswari, M., Reddy, A. R., Varshney, R. K. and Kishor, P. K. (2015). Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry, 94, 104-113.
Sela, D., Buxdorf, K., Shi, J. X., Feldmesser, E., Schreiber, L., Aharoni, A. and Levy, M. (2013). Overexpression of SHN1/WIN1 provokes unique defense responses. PloS one, 8(7), e70146.
Symanczik, S., Lehmann, M. F., Wiemken, A., Boller, T. and Courty, P. E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 28(8), 779-785.
Tari I., Laskay G., Takács Z., Poór P. Response of Sorghum to Abiotic Stresses: A Review. J. Agron. Crop Sci. 2013;199:264–274.
Tuinstra, M. R., Grote, E. M., Goldsbrough, P. B. and Ejeta, G. (1997). Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol. Breed., 3(6), 439-448.
Wagaw, K. (2019). Review on Mechanisms of Drought Tolerance in Sorghum (Sorghum bicolor L.)Moench) Basis and Breeding Methods. Academic Research Journal of Agricultural Science and Research.7(2), 87-99.
Yang, J., Ordiz, M. I., Jaworski, J. G. and Beachy, R. N. (2011). Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiology and Biochemistry, 49(12), 1448-1455.
Yang, Z., Chi, X., Guo, F., Jin, X., Luo, H., Hawar, A., Chen, Y., Feng, K., Wang, B., Qi, J., Yang, Y. and Sun, B. (2020). SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of plant physiology, 246-247, 153142.
Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell Physiology, 38(10), 1095-1102.
Yunus, M. and Paroda, R. S. (1982). Impact of biparental mating on correlation coefficients in bread wheat. Theoretical and Applied Genetics, 62(4), 337-343.