2022, Issue 2, Volume 14

A REVIEW ON DROUGHT STRESS IN SORGHUM BICOLOR: PHYSIOLOGICAL AND MOLECULAR APPROACH

Shricharan S.1* Dharani E.2 and Balaji B.3

1,2 Division of Plant Physiology, Indian Agricultural Research Institute – National Institute of Abiotic Stress Management, Baramati, Maharashtra, India – 413115.

3 Division of Molecular Biology & Biotechnology, Indian Agricultural Research Institute,

Pusa, New Delhi, India – 110012.

Email: shricharanag@gmail.com

Received-03.02.2022, Revised-19.02.2022, Accepted-26.02.2022

Abstract: Sorghum bicolor is one of the diverse and staple food crops grown on earth. About 41.97 million hectares on the earth has been cultivated sorghum in the year of 2021-2022. Drought is prevailing problem and important factor all over the world on agriculture production. Along with that, climate change making a serious situation for the cultivation of crops. Sorghum is one of the excellent crops capable of adapting to drastic environmental changes. By understanding the mechanism behind the adaptation and tolerance to the drought, we can make better crop. This review covers the possible approaches in the drought tolerance of the Sorghum such as the morphological character determining the drought stress tolerances, microbial interactions forming symbionts and helping in stress tolerance, breeding and molecular approaches to improve the abiotic stress tolerance and the use of QTLs and Marker Assisted Selection for improving the drought tolerance.

Keywords: Drought stress, tolerance, drought genes, breeding, QTLs

References

Abou-Elwafa, S.F. and Shehzad, T. (2018). Genetic identification and expression profiling of drought responsive genes in sorghum. Environ. Exp. Bot. 155, 12 – 20.

Google Scholar

Assefa, Amelework Beyene (2012). Genetic diversity analysis of lowland sorghum [Sorghum bicolor (L.) Moench] landraces under moisture stress conditions and breeding for drought tolerance in North Eastern Ethiopia (Doctoral dissertation, University of KwaZulu-Nata).
Google Scholar

Assefa, Y., Staggenborg, S. A. and Prasad, V. P. V. (2010). Grain sorghum water requirement and responses to drought stress: A review. Online. Crop Management doi:10.1094/CM-2010-1109-01-RV.

Google Scholar

Bandaru, V., Stewart, B. A., Baumhardt, R. L., Ambati, S., Robinson, C. A. and Schlegel, A. (2006). Growing dryland grain sorghum in clumps to reduce vegetative growth and increase yield. Agronomy Journal, 98(4), 1109-1120.

Google Scholar

Basu, S., Ramegowda, V., Kumar, A. and Pereira, A. (2016). Plant adaptation to drought stress. F1000Research5, F1000 Faculty Rev-1554.  

Google Scholar

Bao, S.G., Shi, J.X., Luo, F., Ding, B., Hao, J., Xie, X.D. and Sun, S. (2017). Overexpression of Sorghum WINL1 gene confers drought tolerance in Arabidopsis thaliana through the regulation of cuticular biosynthesis. Plant Cell Tiss Organ Cult 128347–356.  

Google Scholar

Belete, T. (2018). Breeding for resistance to drought: A case in sorghum (Sorghum bicolor (L.)Moench). J Agric Forest Meteorol Res1(1), 1-10.

Google Scholar

Bibi, A., Sadaqat, H. A., Tahir, M. H. N. and Akram, H. M. (2012). Screening of sorghum (Sorghum bicolor var Moench) for drought tolerance at seedling stage in polyethylene glycol. J. Anim. Plant Sci, 22(3), 671-678.

Google Scholar

Caddel, J. L. and Weibel, D. E. (1972). Photoperiodism in Sorghum 1. Agronomy Journal, 64(4), 473-476.

Google Scholar

Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M. and Heard, J. E. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant physiology147(2), 446-455.

Google Scholar

Dahlberg, J., Berenji, J., Sikora, V. and Latkovic, D. (2012). Assessing sorghum [Sorghum bicolor (L)Moench] germplasm for new traits: food, fuels & unique uses. Maydica, 56(2).

Google Scholar

Disasa, T., Feyissa, T., Admassu, B., Paliwal, R., Villiers, S.D. and Odeny, D.A. (2016). Molecular evaluation of Ethiopian sweet sorghum germplasm and their contribution to regional breeding programs. Aust. J. Crop Sci, 10, 520 – 527.

Google Scholar

Edema, R. and Amoding, G.K. (2015). Validating Simple Sequence Repeats (SSR) markers for introgression of stay-green Quantitative Trait Loci (QTL) into elite sorghum lines. Afr. J. Biotechnol. 14(46), 3101 – 3111.  

Google Scholar

Hancock, J.D. (2000). “Value of sorghum and sorghum co-products in diets for livestock”, in: Smith, C.W. and R.A. Frederiksen (eds.), Sorghum: Origin, History, Technology, and Production, John Wiley & Sons, New York, 731-749.

Google Scholar

Howarth, C. J., Rattunde, E. W., Bidinger, F. R. and Harris, D. (1996). Seedling survival of abiotic stress: Sorghum and pearl millet.  

Google Scholar

Kapoor, R., Evelin, H., Mathur, P. and Giri, B. (2013). Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In Plant acclimation to environmental stress (pp. 359-401). Springer, New York, NY.

Google Scholar

Kishor, P. K., Hong, Z., Miao, G. H., Hu, C. A. A. and Verma, D. P. S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant physiology108(4), 1387-1394.

                                                   Google Scholar

Li, H., Han, X., Liu, X., Zhou, M., Ren, W., Zhao, B., Ju, C., Liu, Y. and Zhao, J. (2019). A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC genomics20(1), 737.

Google Scholar

Lu, M., Zhang, DF., Shi, YS. et al. Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic ArabidopsisPlant Cell Tiss Organ Cult 115, 443–455 (2013).  

Google Scholar

Maheswari, M., Varalaxmi, Y., Vijayalakshmi, A., Yadav, S. K., Sharmila, P., Venkateswarlu, B. and Saradhi, P. P. (2010). Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum54(4), 647-652.

Google Scholar

Maqbool, S. B., Devi, P. and Sticklen, M. B. (2001). Biotechnology: Genetic improvement of sorghum (Sorghum bicolor (L.)Moench). In Vitro Cellular & Developmental Biology-Plant37(5), 504-515.

Google Scholar

Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H. and Daffonchio, D. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models?.Plant signaling & behavior, 8(10), e26741.

Google Scholar

Mayak, S., Tirosh, T. and Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant physiology and Biochemistry, 42(6), 565-572.

Google Scholar

McCormick, R. F., Truong, S. K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., Kennedy, M., Amirebrahimi, M., Weers, B. D., McKinley, B., Mattison, A., Morishige, D. T., Grimwood, J., Schmutz, J. and Mullet, J. E. (2018). The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. The Plant journal : for cell and molecular biology93(2), 338–354.  

Google Scholar

Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A. and Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in plant science8, 172.

Google Scholar

Mittal, S., Mallikarjuna, M. G., Rao, A. R., Jain, P. A., Dash, P. K. and Thirunavukkarasu, N. (2017). Comparative analysis of CDPK family in maize, Arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement. Frontiers in Chemistry5, 115.

Google Scholar

Ngara, R., Goche, T., Swanevelder, D. Z. and Chivasa, S. (2021). Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life, 11(7), 704.

Google Scholar

Osmolovskaya N., Shumilina J., Kim A., Didio A., Grishina T., Bilova T., Keltsieva O.A., Zhukov V., Tikhonovich I., Tarakhovskaya E., et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. Int. J. Mol. Sci. 2018;19:4089.  

Google Scholar

Queiroz, M. S., Oliveira, C. E., Steiner, F., Zuffo, A. M., Zoz, T., Vendruscolo, E. P. and Menis, F. T. (2019). Drought stresses on seed germination and early growth of maize and sorghum. Journal of Agricultural Science, 11(2), 310-318.

Google Scholar

Reddy, P. S., Jogeswar, G., Rasineni, G. K., Maheswari, M., Reddy, A. R., Varshney, R. K. and Kishor, P. K. (2015). Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry94, 104-113.

Google Scholar

Sela, D., Buxdorf, K., Shi, J. X., Feldmesser, E., Schreiber, L., Aharoni, A. and Levy, M. (2013). Overexpression of SHN1/WIN1 provokes unique defense responses. PloS one8(7), e70146.  

Google Scholar

Symanczik, S., Lehmann, M. F., Wiemken, A., Boller, T. and Courty, P. E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 28(8), 779-785.

Google Scholar

Tari I., Laskay G., Takács Z., Poór P. Response of Sorghum to Abiotic Stresses: A Review. J. Agron. Crop Sci. 2013;199:264–274.  

Google Scholar

Tuinstra, M. R., Grote, E. M., Goldsbrough, P. B. and Ejeta, G. (1997). Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol. Breed., 3(6), 439-448.

Google Scholar

Wagaw, K. (2019). Review on Mechanisms of Drought Tolerance in Sorghum (Sorghum bicolor L.)Moench) Basis and Breeding Methods.  Academic Research Journal of Agricultural Science and Research.7(2), 87-99.

Google Scholar

Yang, J., Ordiz, M. I., Jaworski, J. G. and Beachy, R. N. (2011). Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiology and Biochemistry49(12), 1448-1455.

Google Scholar

Yang, Z., Chi, X., Guo, F., Jin, X., Luo, H., Hawar, A., Chen, Y., Feng, K., Wang, B., Qi, J., Yang, Y. and Sun, B. (2020). SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of plant physiology246-247, 153142.  

Google Scholar

Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell Physiology38(10), 1095-1102.

Google Scholar

Yunus, M. and Paroda, R. S. (1982). Impact of biparental mating on correlation coefficients in bread wheat. Theoretical and Applied Genetics62(4), 337-343.

Google Scholar